BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

863 related articles for article (PubMed ID: 26168398)

  • 1. Genetic compensation induced by deleterious mutations but not gene knockdowns.
    Rossi A; Kontarakis Z; Gerri C; Nolte H; Hölper S; Krüger M; Stainier DY
    Nature; 2015 Aug; 524(7564):230-3. PubMed ID: 26168398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish nampt-a mutants are viable despite perturbed primitive hematopoiesis.
    Pomreinke AP; Müller P
    Hereditas; 2024 Apr; 161(1):14. PubMed ID: 38685093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Islet2a function in zebrafish embryos: Mutants and morphants differ in morphologic phenotypes and gene expression.
    Moreno RL; Williams K; Jones KL; Ribera AB
    PLoS One; 2018; 13(6):e0199233. PubMed ID: 29927984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish.
    Lai JKH; Gagalova KK; Kuenne C; El-Brolosy MA; Stainier DYR
    Dev Biol; 2019 Oct; 454(1):21-28. PubMed ID: 31201802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish.
    Kok FO; Shin M; Ni CW; Gupta A; Grosse AS; van Impel A; Kirchmaier BC; Peterson-Maduro J; Kourkoulis G; Male I; DeSantis DF; Sheppard-Tindell S; Ebarasi L; Betsholtz C; Schulte-Merker S; Wolfe SA; Lawson ND
    Dev Cell; 2015 Jan; 32(1):97-108. PubMed ID: 25533206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of morpholino binding sites (DeMOBS) to assess specificity of morphant phenotypes.
    Cunningham CM; Bellipanni G; Habas R; Balciunas D
    Sci Rep; 2020 Sep; 10(1):15366. PubMed ID: 32958829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic compensation: A phenomenon in search of mechanisms.
    El-Brolosy MA; Stainier DYR
    PLoS Genet; 2017 Jul; 13(7):e1006780. PubMed ID: 28704371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parental requirement for dual-specificity phosphatase 6 in zebrafish.
    Maurer JM; Sagerström CG
    BMC Dev Biol; 2018 Mar; 18(1):6. PubMed ID: 29544468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic compensation by
    She J; Wu Y; Lou B; Lodd E; Klems A; Schmoehl F; Yuan Z; Noble FL; Kroll J
    Cell Cycle; 2019 Oct; 18(20):2683-2696. PubMed ID: 31451030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrosomal protein FOR20 is essential for cilia-dependent development in zebrafish embryos.
    Xie S; Jin J; Xu Z; Huang Y; Zhang W; Zhao L; Lo LJ; Peng J; Liu W; Wang F; Shu Q; Zhou T
    FASEB J; 2019 Mar; 33(3):3613-3622. PubMed ID: 30475641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes.
    Novodvorsky P; Watson O; Gray C; Wilkinson RN; Reeve S; Smythe C; Beniston R; Plant K; Maguire R; M K Rothman A; Elworthy S; van Eeden FJ; Chico TJ
    PLoS One; 2015; 10(10):e0141611. PubMed ID: 26506092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse Genetics in Zebrafish: Mutants, Morphants, and Moving Forward.
    Lawson ND
    Trends Cell Biol; 2016 Feb; 26(2):77-79. PubMed ID: 26739910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish.
    D'Agati G; Beltre R; Sessa A; Burger A; Zhou Y; Mosimann C; White RM
    Dev Biol; 2017 Oct; 430(1):11-17. PubMed ID: 28760346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. von Hippel-Lindau gene plays a role during zebrafish pronephros development.
    Chen YH; Chang CF; Lai YY; Sun CY; Ding YJ; Tsai JN
    In Vitro Cell Dev Biol Anim; 2015 Nov; 51(10):1023-32. PubMed ID: 26194803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Zebrafish RNA-Less Mutant Alleles by Deleting Gene Promoters with CRISPR/Cas9.
    Kumari P; Sturgeon M; Bonde G; Cornell RA
    Methods Mol Biol; 2022; 2403():91-106. PubMed ID: 34913119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene redundancy and gene compensation: An updated view.
    Peng J
    J Genet Genomics; 2019 Jul; 46(7):329-333. PubMed ID: 31377237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenge of dissecting gene function in model organisms: Tools to characterize genetic mutants and assess transcriptional adaptation in zebrafish.
    Cardenas-Rodriguez M; Drummond IA
    Methods Cell Biol; 2023; 176():1-25. PubMed ID: 37164532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Microinjection of Morpholino Antisense Oligonucleotides and mRNA into Zebrafish Embryos to Elucidate Specific Gene Function in Heart Development.
    Zakaria ZZ; Eisa-Beygi S; Benslimane FM; Ramchandran R; Yalcin HC
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36036621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The knockdown of the maternal estrogen receptor 2a (esr2a) mRNA affects embryo transcript contents and larval development in zebrafish.
    Celeghin A; Benato F; Pikulkaew S; Rabbane MG; Colombo L; Dalla Valle L
    Gen Comp Endocrinol; 2011 May; 172(1):120-9. PubMed ID: 21199655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.