These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 2616889)
1. Involvement of the bacterial phosphotransferase system in diverse mechanisms of transcriptional regulation. Saier MH Res Microbiol; 1989; 140(6):349-52. PubMed ID: 2616889 [TBL] [Abstract][Full Text] [Related]
3. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. Krüger S; Hecker M J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347 [TBL] [Abstract][Full Text] [Related]
5. The bacterial phosphotransferase system: new frontiers 30 years later. Saier MH; Reizer J Mol Microbiol; 1994 Sep; 13(5):755-64. PubMed ID: 7815935 [TBL] [Abstract][Full Text] [Related]
6. The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. De Reuse H; Danchin A J Bacteriol; 1988 Sep; 170(9):3827-37. PubMed ID: 2457575 [TBL] [Abstract][Full Text] [Related]
7. Molecular characteristics of phosphoenolpyruvate: mannose phosphotransferase system in Streptococcus bovis. Asanuma N; Yoshii T; Hino T Curr Microbiol; 2004 Jul; 49(1):4-9. PubMed ID: 15297922 [TBL] [Abstract][Full Text] [Related]
8. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. Krüger S; Gertz S; Hecker M J Bacteriol; 1996 May; 178(9):2637-44. PubMed ID: 8626332 [TBL] [Abstract][Full Text] [Related]
10. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. Chin AM; Feldheim DA; Saier MH J Bacteriol; 1989 May; 171(5):2424-34. PubMed ID: 2496106 [TBL] [Abstract][Full Text] [Related]
11. The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery. Saier MH J Mol Microbiol Biotechnol; 2015; 25(2-3):73-8. PubMed ID: 26159069 [TBL] [Abstract][Full Text] [Related]
12. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related]
13. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
14. Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Pereira CS; Santos AJ; Bejerano-Sagie M; Correia PB; Marques JC; Xavier KB Mol Microbiol; 2012 Apr; 84(1):93-104. PubMed ID: 22384939 [TBL] [Abstract][Full Text] [Related]
15. Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. Stülke J; Hillen W Naturwissenschaften; 1998 Dec; 85(12):583-92. PubMed ID: 9871918 [TBL] [Abstract][Full Text] [Related]
16. A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Reizer J; Reizer A; Saier MH; Jacobson GR Protein Sci; 1992 Jun; 1(6):722-6. PubMed ID: 1304914 [TBL] [Abstract][Full Text] [Related]
17. The role of the phosphoenolpyruvate-phosphotransferase system in inducer exclusion. Kornberg HL; Britton P; Jones-Mortimer MC; Lee LG Biochem Soc Trans; 1984 Apr; 12(2):157-9. PubMed ID: 6373430 [No Abstract] [Full Text] [Related]
18. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon. Kaufman GE; Yother J J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092 [TBL] [Abstract][Full Text] [Related]
19. The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Geerse RH; Izzo F; Postma PW Mol Gen Genet; 1989 Apr; 216(2-3):517-25. PubMed ID: 2546043 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: evidence for the existence of a single transcriptional unit. De Reuse H; Huttner E; Danchin A Gene; 1984 Dec; 32(1-2):31-40. PubMed ID: 6099314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]