BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26168937)

  • 1. Transitions in Discrete Absorption Bands of Au130 Clusters upon Stepwise Charging by Spectroelectrochemistry.
    Wang D; Padelford JW; Ahuja T; Wang G
    ACS Nano; 2015 Aug; 9(8):8344-51. PubMed ID: 26168937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed dithiolate durene-DT and monothiolate phenylethanethiolate protected Au130 nanoparticles with discrete core and core-ligand energy states.
    Tang Z; Robinson DA; Bokossa N; Xu B; Wang S; Wang G
    J Am Chem Soc; 2011 Oct; 133(40):16037-44. PubMed ID: 21919537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters.
    Ahuja T; Wang D; Tang Z; Robinson DA; Padelford JW; Wang G
    Phys Chem Chem Phys; 2015 Jul; 17(29):19342-9. PubMed ID: 26138500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Au130(SR)50 and Au(130-x)Ag(x)(SR)50 nanomolecules through core size conversion of larger metal clusters.
    Jupally VR; Dass A
    Phys Chem Chem Phys; 2014 Jun; 16(22):10473-9. PubMed ID: 24733419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters.
    Aikens CM
    Acc Chem Res; 2018 Dec; 51(12):3065-3073. PubMed ID: 30444598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantized double layer charging of Au130(SR)50 nanomolecules.
    Jupally VR; Thrasher JG; Dass A
    Analyst; 2014 Apr; 139(8):1826-9. PubMed ID: 24605360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand heterogeneity on monolayer-protected gold clusters.
    Song Y; Harper AS; Murray RW
    Langmuir; 2005 Jun; 21(12):5492-500. PubMed ID: 15924480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near infrared luminescence of gold nanoclusters affected by the bonding of 1,4-dithiolate durene and monothiolate phenylethanethiolate.
    Tang Z; Ahuja T; Wang S; Wang G
    Nanoscale; 2012 Jul; 4(14):4119-24. PubMed ID: 22643767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground and excited electronic states of quininone-containing Re(I)-based rectangles: a comprehensive study of their preparation, electrochemistry, and photophysics.
    Bhattacharya D; Sathiyendiran M; Luo TT; Chang CH; Cheng YH; Lin CY; Lee GH; Peng SM; Lu KL
    Inorg Chem; 2009 Apr; 48(8):3731-42. PubMed ID: 19309160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the structure evolution and core/ligand structure patterns of a series of large sized thiolate-protected gold clusters Au
    Wang P; Xiong L; Sun X; Ma Z; Pei Y
    Nanoscale; 2018 Feb; 10(8):3918-3929. PubMed ID: 29423475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and vibrational signatures of the Au102(p-MBA)44 cluster.
    Hulkko E; Lopez-Acevedo O; Koivisto J; Levi-Kalisman Y; Kornberg RD; Pettersson M; Häkkinen H
    J Am Chem Soc; 2011 Mar; 133(11):3752-5. PubMed ID: 21348523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and spectroscopic characterization of the novel charge-transfer ground state in diimine complexes of ytterbocene.
    Da Re RE; Kuehl CJ; Brown MG; Rocha RC; Bauer ED; John KD; Morris DE; Shreve AP; Sarrao JL
    Inorg Chem; 2003 Sep; 42(18):5551-9. PubMed ID: 12950203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhomogeneous Quantized Single-Electron Charging and Electrochemical-Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters.
    Chen S; Higaki T; Ma H; Zhu M; Jin R; Wang G
    ACS Nano; 2020 Dec; 14(12):16781-16790. PubMed ID: 33196176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphine-Ligated Gold Clusters with Core+ exo Geometries: Unique Properties and Interactions at the Ligand-Cluster Interface.
    Konishi K; Iwasaki M; Shichibu Y
    Acc Chem Res; 2018 Dec; 51(12):3125-3133. PubMed ID: 30427180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrafast look at Au nanoclusters.
    Yau SH; Varnavski O; Goodson T
    Acc Chem Res; 2013 Jul; 46(7):1506-16. PubMed ID: 23651457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of interparticle interactions of larger (4.63 nm) monolayer protected gold clusters during quantized double layer charging.
    Chaki NK; Kakade B; Vijayamohanan KP; Singh P; Dharmadhikari CV
    Phys Chem Chem Phys; 2006 Apr; 8(15):1837-44. PubMed ID: 16633670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions.
    Shichibu Y; Konishi K
    Inorg Chem; 2013 Jun; 52(11):6570-5. PubMed ID: 23679833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals.
    Negishi Y; Nobusada K; Tsukuda T
    J Am Chem Soc; 2005 Apr; 127(14):5261-70. PubMed ID: 15810862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy.
    Menard LD; Xu H; Gao SP; Twesten RD; Harper AS; Song Y; Wang G; Douglas AD; Yang JC; Frenkel AI; Murray RW; Nuzzo RG
    J Phys Chem B; 2006 Aug; 110(30):14564-73. PubMed ID: 16869556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the perimeter model to the assignment of the electronic absorption spectra of gold(III) hexaphyrins with [4n+2] and [4n] pi-electron systems.
    Muranaka A; Matsushita O; Yoshida K; Mori S; Suzuki M; Furuyama T; Uchiyama M; Osuka A; Kobayashi N
    Chemistry; 2009; 15(15):3744-51. PubMed ID: 19212986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.