BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26169019)

  • 1. Dehydration triggers differential microRNA expression in Xenopus laevis brain.
    Luu BE; Storey KB
    Gene; 2015 Nov; 573(1):64-9. PubMed ID: 26169019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis.
    Wu CW; Biggar KK; Storey KB
    Gene; 2013 Oct; 529(2):269-75. PubMed ID: 23958654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro- and anti-apoptotic microRNAs are differentially regulated during estivation in Xenopus laevis.
    Biggar Y; Ingelson-Filpula WA; Storey KB
    Gene; 2022 Apr; 819():146236. PubMed ID: 35114277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis.
    Biggar KK; Biggar Y; Storey KB
    J Exp Zool A Ecol Genet Physiol; 2015 Jul; 323(6):375-81. PubMed ID: 25866033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased transcript levels and kinetic function of pyruvate kinase during severe dehydration in aestivating African clawed frogs, Xenopus laevis.
    Dawson NJ; Biggar Y; Malik AI; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():245-252. PubMed ID: 29331521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis.
    Wu CW; Tessier SN; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020; 246-247():110461. PubMed ID: 32497588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis.
    Malik AI; Storey KB
    J Exp Biol; 2009 Aug; 212(Pt 16):2595-603. PubMed ID: 19648404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA expression in the heart of Xenopus laevis facilitates metabolic adaptation to dehydration.
    Hawkins LJ; Storey KB
    Genomics; 2020 Sep; 112(5):3525-3536. PubMed ID: 32259572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis.
    Zhang Y; Luu BE; Storey KB
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1721-1728. PubMed ID: 29746959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of antioxidant defense during dehydration stress in the African clawed frog.
    Malik AI; Storey KB
    Gene; 2009 Aug; 442(1-2):99-107. PubMed ID: 19379800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights from a vertebrate model organism on the molecular mechanisms of whole-body dehydration tolerance.
    Luu BE; Hawkins LJ; Storey KB
    Mol Cell Biochem; 2021 Jun; 476(6):2381-2392. PubMed ID: 33595794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of a urea sensitive lactate dehydrogenase from skeletal muscle of the African clawed frog, Xenopus laevis.
    Childers CL; Storey KB
    J Comp Physiol B; 2019 Apr; 189(2):271-281. PubMed ID: 30631901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the unfolded protein response during dehydration stress in African clawed frogs, Xenopus laevis.
    Malik AI; Storey JM; Storey KB
    Cell Stress Chaperones; 2023 Sep; 28(5):529-540. PubMed ID: 35484355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis.
    Wu CW; Tessier SN; Storey KB
    Biochem Cell Biol; 2017 Dec; 95(6):663-671. PubMed ID: 28708941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis.
    Katzenback BA; Dawson NJ; Storey KB
    J Comp Physiol B; 2014 Jul; 184(5):601-11. PubMed ID: 24651940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational Regulation of Hexokinase Function and Protein Stability in the Aestivating Frog Xenopus laevis.
    Childers CL; Storey KB
    Protein J; 2016 Feb; 35(1):61-71. PubMed ID: 26797504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of heat shock proteins in response to dehydration in Xenopus laevis.
    Luu BE; Wijenayake S; Malik AI; Storey KB
    Cell Stress Chaperones; 2018 Jan; 23(1):45-53. PubMed ID: 28676984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testis-derived microRNA profiles of African clawed frogs (Xenopus) and their sterile hybrids.
    Michalak P; Malone JH
    Genomics; 2008 Feb; 91(2):158-64. PubMed ID: 18079091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous nitrogen excretion in the African clawed frog Xenopus laevis: effects of high environmental ammonia (HEA).
    Cruz MJ; Sourial MM; Treberg JR; Fehsenfeld S; Adlimoghaddam A; Weihrauch D
    Aquat Toxicol; 2013 Jul; 136-137():1-12. PubMed ID: 23624175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring.
    Mechkarska M; Meetani M; Michalak P; Vaksman Z; Takada K; Conlon JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Sep; 7(3):285-91. PubMed ID: 22687652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.