These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26169114)

  • 1. Ultrathin, freestanding, stimuli-responsive, porous membranes from polymer hydrogel-brushes.
    Kang C; Ramakrishna SN; Nelson A; Cremmel CV; vom Stein H; Spencer ND; Isa L; Benetti EM
    Nanoscale; 2015 Aug; 7(30):13017-25. PubMed ID: 26169114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic transformation of a freestanding polymer nanosheet induced by a thermoresponsive surface.
    Fujie T; Park JY; Murata A; Estillore NC; Tria MC; Takeoka S; Advincula RC
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1404-13. PubMed ID: 20355942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.
    de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach.
    Jalili K; Abbasi F; Behboodpour L
    J Mech Behav Biomed Mater; 2019 May; 93():118-129. PubMed ID: 30785077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Two-Component, Brush-on-Brush Topographical Microstructures by Combination of Atom-Transfer Radical Polymerization with Polymer End-Functionalization and Photopatterning.
    Chapman P; Ducker RE; Hurley CR; Hobbs JK; Leggett GJ
    Langmuir; 2015 Jun; 31(21):5935-44. PubMed ID: 25938225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML
    Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films.
    Gao T; Wang X; Yu B; Wei Q; Xia Y; Zhou F
    Langmuir; 2013 Jan; 29(4):1054-60. PubMed ID: 23294478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization.
    Yameen B; Alvarez M; Azzaroni O; Jonas U; Knoll W
    Langmuir; 2009 Jun; 25(11):6214-20. PubMed ID: 19271778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking.
    Matsukuma D; Yamamoto K; Aoyagi T
    Langmuir; 2006 Jun; 22(13):5911-5. PubMed ID: 16768529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes.
    Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R
    Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces behave as "tentacles" to capture ferritin from aqueous solution.
    Chen JK; Chen ZY; Lin HC; Hong PD; Chang FC
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1525-32. PubMed ID: 20355956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP.
    Estillore NC; Advincula RC
    Langmuir; 2011 May; 27(10):5997-6008. PubMed ID: 21513321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density.
    Wang S; Zhu Y
    Langmuir; 2009 Dec; 25(23):13448-55. PubMed ID: 19863074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness.
    Bhairamadgi NS; Pujari SP; Leermakers FA; van Rijn CJ; Zuilhof H
    Langmuir; 2014 Mar; 30(8):2068-76. PubMed ID: 24555721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.