These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26169222)

  • 1. Ultimate conductivity performance in metallic nanowire networks.
    Gomes da Rocha C; Manning HG; O'Callaghan C; Ritter C; Bellew AT; Boland JJ; Ferreira MS
    Nanoscale; 2015 Aug; 7(30):13011-6. PubMed ID: 26169222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks.
    Bellew AT; Manning HG; Gomes da Rocha C; Ferreira MS; Boland JJ
    ACS Nano; 2015 Nov; 9(11):11422-9. PubMed ID: 26448205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective medium theory for the conductivity of disordered metallic nanowire networks.
    O'Callaghan C; Gomes da Rocha C; Manning HG; Boland JJ; Ferreira MS
    Phys Chem Chem Phys; 2016 Oct; 18(39):27564-27571. PubMed ID: 27722404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter.
    Sorel S; Lyons PE; De S; Dickerson JC; Coleman JN
    Nanotechnology; 2012 May; 23(18):185201. PubMed ID: 22498640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative study of the photothermal properties of metallic nanowire networks.
    Bell AP; Fairfield JA; McCarthy EK; Mills S; Boland JJ; Baffou G; McCloskey D
    ACS Nano; 2015 May; 9(5):5551-8. PubMed ID: 25938797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation.
    Fairfield JA; Ritter C; Bellew AT; McCarthy EK; Ferreira MS; Boland JJ
    ACS Nano; 2014 Sep; 8(9):9542-9. PubMed ID: 25153920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmability of nanowire networks.
    Bellew AT; Bell AP; McCarthy EK; Fairfield JA; Boland JJ
    Nanoscale; 2014 Aug; 6(16):9632-9. PubMed ID: 24990707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly reliable ag nanowire flexible transparent electrode with mechanically welded junctions.
    Hwang B; Shin HA; Kim T; Joo YC; Han SM
    Small; 2014 Aug; 10(16):3397-404. PubMed ID: 24789010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical modeling of orientation effects in random nanowire networks.
    Jagota M; Scheinfeld I
    Phys Rev E; 2020 Jan; 101(1-1):012304. PubMed ID: 32069576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.
    Haeusler S; Schuch K; Maass W
    J Physiol Paris; 2009; 103(1-2):73-87. PubMed ID: 19500669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical conductance of two-dimensional random percolating networks based on mixtures of nanowires and nanorings: A mean-field approach along with computer simulation.
    Tarasevich YY; Eserkepov AV
    Phys Rev E; 2023 Mar; 107(3-1):034105. PubMed ID: 37073027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact model for multi-phase liquid-liquid flows in micro-fluidic devices.
    Jousse F; Lian G; Janes R; Melrose J
    Lab Chip; 2005 Jun; 5(6):646-56. PubMed ID: 15915257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for simulating and estimating the state and functional topology of complex dynamic geometric networks.
    Buibas M; Silva GA
    Neural Comput; 2011 Jan; 23(1):183-214. PubMed ID: 20964542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient welding of silver nanowire networks without post-processing.
    Lee J; Lee I; Kim TS; Lee JY
    Small; 2013 Sep; 9(17):2887-94. PubMed ID: 23606676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared.
    Bao C; Yang J; Gao H; Li F; Yao Y; Yang B; Fu G; Zhou X; Yu T; Qin Y; Liu J; Zou Z
    ACS Nano; 2015 Mar; 9(3):2502-9. PubMed ID: 25738309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effects and the problem with percolation in nanostructured transparent conductors.
    De S; King PJ; Lyons PE; Khan U; Coleman JN
    ACS Nano; 2010 Dec; 4(12):7064-72. PubMed ID: 21133390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductivity control of as-grown branched indium tin oxide nanowire networks.
    Laforge JM; Cocker TL; Beaudry AL; Cui K; Tucker RT; Taschuk MT; Hegmann FA; Brett MJ
    Nanotechnology; 2014 Jan; 25(3):035701. PubMed ID: 24346484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.