BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 26169321)

  • 1. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.
    Thompson WH; Fransson P
    Neuroimage; 2015 Nov; 121():227-42. PubMed ID: 26169321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity hubs of the mouse brain.
    Liska A; Galbusera A; Schwarz AJ; Gozzi A
    Neuroimage; 2015 Jul; 115():281-91. PubMed ID: 25913701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
    Zhang X; Li X; Jin C; Chen H; Li K; Zhu D; Jiang X; Zhang T; Lv J; Hu X; Han J; Zhao Q; Guo L; Li L; Liu T
    Brain Topogr; 2014 Nov; 27(6):747-65. PubMed ID: 24903106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements.
    Toussaint PJ; Maiz S; Coynel D; Doyon J; Messé A; de Souza LC; Sarazin M; Perlbarg V; Habert MO; Benali H
    Neuroimage; 2014 Nov; 101():778-86. PubMed ID: 25111470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.
    Mechling AE; Hübner NS; Lee HL; Hennig J; von Elverfeldt D; Harsan LA
    Neuroimage; 2014 Aug; 96():203-15. PubMed ID: 24718287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion.
    O'Neil EB; Hutchison RM; McLean DA; Köhler S
    Neuroimage; 2014 May; 92():349-55. PubMed ID: 24531049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependent differences between functional and effective connectivity of the human cortical motor system.
    Rehme AK; Eickhoff SB; Grefkes C
    Neuroimage; 2013 Feb; 67():237-46. PubMed ID: 23201364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Large-Scale Network Convergence in the Human Functional Connectome.
    Bell PT; Shine JM
    Brain Connect; 2015 Nov; 5(9):565-74. PubMed ID: 26005099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent functional connectivity in resting state networks.
    Samogin J; Marino M; Porcaro C; Wenderoth N; Dupont P; Swinnen SP; Mantini D
    Hum Brain Mapp; 2020 Dec; 41(18):5187-5198. PubMed ID: 32840936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.
    Hindriks R; Micheli C; Bosman CA; Oostenveld R; Lewis C; Mantini D; Fries P; Deco G
    Neuroimage; 2018 Nov; 181():347-358. PubMed ID: 29886144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
    Shen Ren ; Junhua Li ; Taya F; deSouza J; Thakor NV; Bezerianos A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):547-556. PubMed ID: 28113670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sexual Dimorphism of Resting-State Network Connectivity in Healthy Ageing.
    Jamadar SD; Sforazzini F; Raniga P; Ferris NJ; Paton B; Bailey MJ; Brodtmann A; Yates PA; Donnan GA; Ward SA; Woods RL; Storey E; McNeil JJ; Egan GF;
    J Gerontol B Psychol Sci Soc Sci; 2019 Sep; 74(7):1121-1131. PubMed ID: 29471348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
    Gopinath K; Krishnamurthy V; Cabanban R; Crosson BA
    Brain Connect; 2015 Jun; 5(5):267-75. PubMed ID: 25744222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional connectivity and network analysis of midbrain and brainstem nuclei.
    Bär KJ; de la Cruz F; Schumann A; Koehler S; Sauer H; Critchley H; Wagner G
    Neuroimage; 2016 Jul; 134():53-63. PubMed ID: 27046112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.