These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 26169394)

  • 41. Costs and benefits of defences induced by predators differing in dangerousness.
    Hettyey A; Vincze K; Zsarnóczai S; Hoi H; Laurila A
    J Evol Biol; 2011 May; 24(5):1007-19. PubMed ID: 21332859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One of these things is not like the other: Mixed predator cues result in lopsided phenotypic responses in a Neotropical tadpole.
    Rosenthal DM; Deng L; Rose T; Touchon JC
    PLoS One; 2023; 18(5):e0285968. PubMed ID: 37220106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Waterborne amitrole affects the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra).
    Mandrillon AL; Saglio P
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):233-40. PubMed ID: 17549540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica).
    Calsbeek R; Kuchta S
    BMC Evol Biol; 2011 Dec; 11():353. PubMed ID: 22151372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues.
    Ehrsam M; Knutie SA; Rohr JR
    Environ Toxicol Chem; 2016 Sep; 35(9):2239-44. PubMed ID: 26799769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles.
    Fraker ME; Ludsin SA; Luttbeg B; Denver RJ
    Sci Rep; 2021 Feb; 11(1):4427. PubMed ID: 33627747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators.
    Chivers DP; Mirza RS
    J Chem Ecol; 2001 Jan; 27(1):45-51. PubMed ID: 11382066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo).
    Mikó Z; Ujszegi J; Hettyey A
    Aquat Toxicol; 2017 Jun; 187():48-54. PubMed ID: 28365461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Survival, development, and gonadal differentiation in Rana dalmatina chronically exposed to chlorpyrifos.
    Bernabò I; Gallo L; Sperone E; Tripepi S; Brunelli E
    J Exp Zool A Ecol Genet Physiol; 2011 Jun; 315(5):314-27. PubMed ID: 21445987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.
    Warne RW; Crespi EJ
    J Exp Zool A Ecol Genet Physiol; 2015 Mar; 323(3):191-201. PubMed ID: 25676342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interacting effects of predation risk and food availability on larval anuran behaviour and development.
    Nicieza AG
    Oecologia; 2000 Jun; 123(4):497-505. PubMed ID: 28308758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles.
    Hettyey A; Tóth Z; Thonhauser KE; Frommen JG; Penn DJ; Van Buskirk J
    Oecologia; 2015 Nov; 179(3):699-710. PubMed ID: 26163350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.
    Polo-Cavia N; Burraco P; Gomez-Mestre I
    Aquat Toxicol; 2016 Mar; 172():30-5. PubMed ID: 26765086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles.
    Lefcort H; Meguire RA; Wilson LH; Ettinger WF
    Arch Environ Contam Toxicol; 1998 Oct; 35(3):447-56. PubMed ID: 9732476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians.
    Kishida O; Mizuta Y; Nishimura K
    Ecology; 2006 Jun; 87(6):1599-604. PubMed ID: 16869435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of predator stress and malathion on tadpoles of Indian skittering frog.
    Giri A; Yadav SS; Giri S; Sharma GD
    Aquat Toxicol; 2012 Jan; 106-107():157-63. PubMed ID: 22172542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment.
    Mikó Z; Ujszegi J; Gál Z; Imrei Z; Hettyey A
    Aquat Toxicol; 2015 Oct; 167():20-30. PubMed ID: 26254767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pesticide has asymmetric effects on two tadpole species across density gradient.
    Distel CA; Boone MD
    Environ Toxicol Chem; 2011 Mar; 30(3):650-8. PubMed ID: 21298710
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predator induced phenotypic plasticity in the pinewoods tree frog, Hyla femoralis: necessary cues and the cost of development.
    LaFiandra EM; Babbitt KJ
    Oecologia; 2004 Feb; 138(3):350-9. PubMed ID: 14673637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis.
    Groner ML; Rollins-Smith LA; Reinert LK; Hempel J; Bier ME; Relyea RA
    J Exp Biol; 2014 Feb; 217(Pt 3):351-8. PubMed ID: 24115058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.