These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 26169698)
1. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases. Cleary JA; Doherty W; Evans P; Malthouse JP Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1382-91. PubMed ID: 26169698 [TBL] [Abstract][Full Text] [Related]
2. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin. Petrillo T; O'Donohoe CA; Howe N; Malthouse JP Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750 [TBL] [Abstract][Full Text] [Related]
3. Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin. Cleary JA; Doherty W; Evans P; Malthouse JP Biochim Biophys Acta; 2014 Jun; 1844(6):1119-27. PubMed ID: 24657307 [TBL] [Abstract][Full Text] [Related]
4. Peptide aldehydes and nitriles as transition state analog inhibitors of cysteine proteases. Dufour E; Storer AC; Ménard R Biochemistry; 1995 Jul; 34(28):9136-43. PubMed ID: 7619812 [TBL] [Abstract][Full Text] [Related]
5. 13C-NMR study of the inhibition of delta-chymotrypsin by a tripeptide-glyoxal inhibitor. Djurdjevic-Pahl A; Hewage C; Malthouse JP Biochem J; 2002 Mar; 362(Pt 2):339-47. PubMed ID: 11853541 [TBL] [Abstract][Full Text] [Related]
6. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors. Spink E; Hewage C; Malthouse JP Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215 [TBL] [Abstract][Full Text] [Related]
7. A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor. Lowther J; Djurdjevic-Pahl A; Hewage C; Malthouse JP Biochem J; 2002 Sep; 366(Pt 3):983-7. PubMed ID: 12061892 [TBL] [Abstract][Full Text] [Related]
8. A new lysine derived glyoxal inhibitor of trypsin, its properties and utilization for studying the stabilization of tetrahedral adducts by trypsin. Cleary JA; Malthouse JPG Biochem Biophys Rep; 2016 Mar; 5():272-284. PubMed ID: 28955834 [TBL] [Abstract][Full Text] [Related]
9. 13C and 1H NMR studies of ionizations and hydrogen bonding in chymotrypsin-glyoxal inhibitor complexes. Spink E; Cosgrove S; Rogers L; Hewage C; Malthouse JP J Biol Chem; 2007 Mar; 282(11):7852-61. PubMed ID: 17213185 [TBL] [Abstract][Full Text] [Related]
10. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases. Cosgrove S; Rogers L; Hewage CM; Malthouse JP Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620 [TBL] [Abstract][Full Text] [Related]
11. Oxyanion and tetrahedral intermediate stabilisation by subtilisin: detection of a new tetrahedral adduct. Howe N; Rogers L; Hewage C; Malthouse JP Biochim Biophys Acta; 2009 Aug; 1794(8):1251-8. PubMed ID: 19393346 [TBL] [Abstract][Full Text] [Related]
12. Peptide glyoxals: a novel class of inhibitor for serine and cysteine proteinases. Walker B; McCarthy N; Healy A; Ye T; McKervey MA Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):321-3. PubMed ID: 8343111 [TBL] [Abstract][Full Text] [Related]
13. From good substrates to good inhibitors: design of inhibitors for serine and thiol proteases. Baggio R; Shi YQ; Wu YQ; Abeles Biochemistry; 1996 Mar; 35(11):3351-3. PubMed ID: 8639483 [TBL] [Abstract][Full Text] [Related]
14. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases. Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358 [TBL] [Abstract][Full Text] [Related]
15. 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors. Malthouse JP Biochem Soc Trans; 2007 Jun; 35(Pt 3):566-70. PubMed ID: 17511653 [TBL] [Abstract][Full Text] [Related]
16. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids. Martichonok V; Jones JB Bioorg Med Chem; 1997 Apr; 5(4):679-84. PubMed ID: 9158866 [TBL] [Abstract][Full Text] [Related]
17. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin. Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865 [TBL] [Abstract][Full Text] [Related]
18. [Chemoenzymatic synthesis of new fluorogenous substrates for cysteine proteases of the papain family]. Semashko TA; Lysogorskaia EN; Oksenoĭt ES; Bacheva AV; Filippova IIu Bioorg Khim; 2008; 34(3):376-81. PubMed ID: 18672688 [TBL] [Abstract][Full Text] [Related]
20. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes. Mackenzie NE; Grant SK; Scott AI; Malthouse JP Biochemistry; 1986 Apr; 25(8):2293-8. PubMed ID: 3707946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]