These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26169957)

  • 41. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy.
    Kuzman JA; O'Connell TD; Gerdes AM
    Endocrinology; 2007 Jul; 148(7):3477-84. PubMed ID: 17395699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis.
    Mohamed BA; Barakat AZ; Zimmermann WH; Bittner RE; Mühlfeld C; Hünlich M; Engel W; Maier LS; Adham IM
    J Mol Cell Cardiol; 2012 Oct; 53(4):459-68. PubMed ID: 22884543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms of physiological and pathological cardiac hypertrophy.
    Nakamura M; Sadoshima J
    Nat Rev Cardiol; 2018 Jul; 15(7):387-407. PubMed ID: 29674714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes.
    Sandroni PB; Fisher-Wellman KH; Jensen BC
    J Cardiovasc Pharmacol; 2022 Sep; 80(3):364-377. PubMed ID: 35170492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The biochemical response of the heart to hypertension and exercise.
    Wakatsuki T; Schlessinger J; Elson EL
    Trends Biochem Sci; 2004 Nov; 29(11):609-17. PubMed ID: 15501680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure.
    Oudit GY; Crackower MA; Eriksson U; Sarao R; Kozieradzki I; Sasaki T; Irie-Sasaki J; Gidrewicz D; Rybin VO; Wada T; Steinberg SF; Backx PH; Penninger JM
    Circulation; 2003 Oct; 108(17):2147-52. PubMed ID: 12963636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes.
    Wright CD; Wu SC; Dahl EF; Sazama AJ; O'Connell TD
    Cell Signal; 2012 Mar; 24(3):794-802. PubMed ID: 22120526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. microRNA-133a attenuates cardiomyocyte hypertrophy by targeting PKCδ and Gq.
    Lee SY; Lee CY; Ham O; Moon JY; Lee J; Seo HH; Shin S; Kim SW; Lee S; Lim S; Hwang KC
    Mol Cell Biochem; 2018 Feb; 439(1-2):105-115. PubMed ID: 28795305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets.
    Tham YK; Bernardo BC; Ooi JY; Weeks KL; McMullen JR
    Arch Toxicol; 2015 Sep; 89(9):1401-38. PubMed ID: 25708889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardiac function in genetically engineered mice with altered adrenergic receptor signaling.
    Rockman HA; Koch WJ; Lefkowitz RJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1553-9. PubMed ID: 9139936
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noncoding RNAs in Cardiac Hypertrophy.
    Li Y; Liang Y; Zhu Y; Zhang Y; Bei Y
    J Cardiovasc Transl Res; 2018 Dec; 11(6):439-449. PubMed ID: 30171598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cardiac and Vascular α
    Kaykı-Mutlu G; Papazisi O; Palmen M; Danser AHJ; Michel MC; Arioglu-Inan E
    Cells; 2020 Nov; 9(11):. PubMed ID: 33158106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation.
    Jensen BC; OʼConnell TD; Simpson PC
    J Cardiovasc Pharmacol; 2014 Apr; 63(4):291-301. PubMed ID: 24145181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Src tyrosine kinase promotes cardiac remodeling induced by chronic sympathetic activation.
    Li W; Zhu Y; Wang W; He D; Feng L; Li Z
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37650260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays.
    Yun J; Zuscik MJ; Gonzalez-Cabrera P; McCune DF; Ross SA; Gaivin R; Piascik MT; Perez DM
    Cardiovasc Res; 2003 Feb; 57(2):443-55. PubMed ID: 12566117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. mAKAP-a master scaffold for cardiac remodeling.
    Passariello CL; Li J; Dodge-Kafka K; Kapiloff MS
    J Cardiovasc Pharmacol; 2015 Mar; 65(3):218-25. PubMed ID: 25551320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure.
    Perrino C; Rockman HA
    Curr Opin Cardiol; 2007 Sep; 22(5):443-9. PubMed ID: 17762546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. S100beta inhibits alpha1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes.
    Tsoporis JN; Marks A; Kahn HJ; Butany JW; Liu PP; O'Hanlon D; Parker TG
    J Biol Chem; 1997 Dec; 272(50):31915-21. PubMed ID: 9395540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Negative regulators of cardiac hypertrophy.
    Hardt SE; Sadoshima J
    Cardiovasc Res; 2004 Aug; 63(3):500-9. PubMed ID: 15276475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation to exercise-induced stress is not dependent on cardiomyocyte α
    Kaidonis X; Niu W; Chan AY; Kesteven S; Wu J; Iismaa SE; Vatner S; Feneley M; Graham RM
    J Mol Cell Cardiol; 2021 Jun; 155():78-87. PubMed ID: 33647309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.