These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Ritterhoff J; Tian R Nat Rev Cardiol; 2023 Dec; 20(12):812-829. PubMed ID: 37237146 [TBL] [Abstract][Full Text] [Related]
84. Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice. Zhang P; Li T; Liu YQ; Zhang H; Xue SM; Li G; Cheng HM; Cao JM FASEB J; 2019 Nov; 33(11):12240-12252. PubMed ID: 31431066 [TBL] [Abstract][Full Text] [Related]
85. Current Developments on the Role of α Perez DM Front Cell Dev Biol; 2021; 9():652152. PubMed ID: 34113612 [TBL] [Abstract][Full Text] [Related]
86. Determinants of Cardiac Growth and Size. Heallen TR; Kadow ZA; Wang J; Martin JF Cold Spring Harb Perspect Biol; 2020 Mar; 12(3):. PubMed ID: 31615785 [TBL] [Abstract][Full Text] [Related]
87. Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Feuerstein GZ; Young PR Cardiovasc Res; 2000 Feb; 45(3):560-9. PubMed ID: 10728377 [TBL] [Abstract][Full Text] [Related]
88. Automated microscopy of cardiac myocyte hypertrophy: a case study on the role of intracellular α-adrenergic receptors. Ryall KA; Saucerman JJ Methods Mol Biol; 2015; 1234():123-34. PubMed ID: 25304353 [TBL] [Abstract][Full Text] [Related]
90. Recent advances of adapter proteins in the regulation of heart diseases. Tao L; Jia L; Li Y; Song C; Chen Z Heart Fail Rev; 2017 Jan; 22(1):99-107. PubMed ID: 27623843 [TBL] [Abstract][Full Text] [Related]
91. Actin-Binding Proteins in Cardiac Hypertrophy. Pan C; Wang S; Liu C; Ren Z Cells; 2022 Nov; 11(22):. PubMed ID: 36428995 [TBL] [Abstract][Full Text] [Related]
92. Integrins in cardiac hypertrophy: lessons learned from culture systems. Bildyug N ESC Heart Fail; 2021 Oct; 8(5):3634-3642. PubMed ID: 34232557 [TBL] [Abstract][Full Text] [Related]
93. Intracellular signaling and genetic reprogramming during agonist-induced hypertrophy of cardiomyocytes. Van Heugten HA; De Jonge HW; Bezstarosti K; Sharma HS; Verdouw PD; Lamers JM Ann N Y Acad Sci; 1995 Mar; 752():343-52. PubMed ID: 7755279 [No Abstract] [Full Text] [Related]
95. An array of details on G-protein coupled receptor signaling: differential effects of alpha1-adrenergic receptor subtypes on gene expression and cytokine receptor signaling. Nathanson NM Mol Pharmacol; 2003 May; 63(5):959-60. PubMed ID: 12695523 [No Abstract] [Full Text] [Related]
96. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy. Sussman MA; McCulloch A; Borg TK Circ Res; 2002 Nov; 91(10):888-98. PubMed ID: 12433833 [TBL] [Abstract][Full Text] [Related]
97. Signaling hypertrophy: how many switches, how many wires. Homcy CJ Circulation; 1998 May; 97(19):1890-2. PubMed ID: 9609078 [No Abstract] [Full Text] [Related]
98. Molecular biomarkers in cardiac hypertrophy. Zhu L; Li C; Liu Q; Xu W; Zhou X J Cell Mol Med; 2019 Mar; 23(3):1671-1677. PubMed ID: 30648807 [TBL] [Abstract][Full Text] [Related]
99. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Martin TG; Juarros MA; Leinwand LA Nat Rev Cardiol; 2023 May; 20(5):347-363. PubMed ID: 36596855 [TBL] [Abstract][Full Text] [Related]
100. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Nakou ES; Parthenakis FI; Kallergis EM; Marketou ME; Nakos KS; Vardas PE Int J Cardiol; 2016 Apr; 209():167-75. PubMed ID: 26896615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]