BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26170164)

  • 1. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?
    Fels M; Bauer R; Gharabaghi A
    J Neural Eng; 2015 Aug; 12(4):046029. PubMed ID: 26170164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.
    Vukelić M; Gharabaghi A
    Neuroimage; 2015 May; 111():1-11. PubMed ID: 25665968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers.
    Vukelić M; Belardinelli P; Guggenberger R; Royter V; Gharabaghi A
    Neuroimage; 2019 Jul; 195():190-202. PubMed ID: 30951847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance.
    Naros G; Naros I; Grimm F; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jul; 134():142-152. PubMed ID: 27046109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation?
    Guggenberger R; Heringhaus M; Gharabaghi A
    Front Bioeng Biotechnol; 2020; 8():639. PubMed ID: 32733860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.
    Bauer R; Fels M; Royter V; Raco V; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3156-3164. PubMed ID: 27474965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of goal-oriented task design on neurofeedback learning for brain-computer interface control.
    McWhinney SR; Tremblay A; Boe SG; Bardouille T
    Med Biol Eng Comput; 2018 Feb; 56(2):201-210. PubMed ID: 28687962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks.
    Van De Ville D; Jhooti P; Haas T; Kopel R; Lovblad KO; Scheffler K; Haller S
    Neuroimage; 2012 Dec; 63(4):1775-81. PubMed ID: 22960086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery.
    Zich C; Debener S; Kranczioch C; Bleichner MG; Gutberlet I; De Vos M
    Neuroimage; 2015 Jul; 114():438-47. PubMed ID: 25887263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is the optimal task difficulty for reinforcement learning of brain self-regulation?
    Bauer R; Vukelić M; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3033-3041. PubMed ID: 27472538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroencephalographic identifiers of motor adaptation learning.
    Özdenizci O; Yalçın M; Erdoğan A; Patoğlu V; Grosse-Wentrup M; Çetin M
    J Neural Eng; 2017 Aug; 14(4):046027. PubMed ID: 28367834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution.
    Lee D; Jang C; Park HJ
    Neuroimage; 2019 Mar; 188():680-693. PubMed ID: 30599191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback.
    Kober SE; Wood G; Kurzmann J; Friedrich EV; Stangl M; Wippel T; Väljamäe A; Neuper C
    Biol Psychol; 2014 Jan; 95():21-30. PubMed ID: 23714227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofeedback training of alpha-band coherence enhances motor performance.
    Mottaz A; Solcà M; Magnin C; Corbet T; Schnider A; Guggisberg AG
    Clin Neurophysiol; 2015 Sep; 126(9):1754-60. PubMed ID: 25540133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurofeedback facilitation of implicit motor learning.
    Ros T; Munneke MA; Parkinson LA; Gruzelier JH
    Biol Psychol; 2014 Jan; 95():54-8. PubMed ID: 23702458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.