These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26170174)

  • 81. Dynamic Phenylalanine Clamp Interactions Define Single-Channel Polypeptide Translocation through the Anthrax Toxin Protective Antigen Channel.
    Ghosal K; Colby JM; Das D; Joy ST; Arora PS; Krantz BA
    J Mol Biol; 2017 Mar; 429(6):900-910. PubMed ID: 28192089
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The effects of pH on the interaction of anthrax toxin lethal and edema factors with phospholipid vesicles.
    Kochi SK; Martin I; Schiavo G; Mock M; Cabiaux V
    Biochemistry; 1994 Mar; 33(9):2604-9. PubMed ID: 8117722
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Structural determinants for the binding of anthrax lethal factor to oligomeric protective antigen.
    Melnyk RA; Hewitt KM; Lacy DB; Lin HC; Gessner CR; Li S; Woods VL; Collier RJ
    J Biol Chem; 2006 Jan; 281(3):1630-5. PubMed ID: 16293620
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Membrane insertion by anthrax protective antigen in cultured cells.
    Qa'dan M; Christensen KA; Zhang L; Roberts TM; Collier RJ
    Mol Cell Biol; 2005 Jul; 25(13):5492-8. PubMed ID: 15964805
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.
    Kreidler AM; Benz R; Barth H
    Arch Toxicol; 2017 Mar; 91(3):1431-1445. PubMed ID: 27106023
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of endosomal acidification on small ion transport through the anthrax toxin PA
    Kalu N; Alcaraz A; Yamini G; Momben Abolfath S; Lucas L; Kenney C; Aguilella VM; Nestorovich EM
    FEBS Lett; 2017 Nov; 591(21):3481-3492. PubMed ID: 28963849
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Secondary Structure Preferences of the Anthrax Toxin Protective Antigen Translocase.
    Das D; Krantz BA
    J Mol Biol; 2017 Mar; 429(5):753-762. PubMed ID: 28115202
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Model of the toxic complex of anthrax: responsive conformational changes in both the lethal factor and the protective antigen heptamer.
    Tama F; Ren G; Brooks CL; Mitra AK
    Protein Sci; 2006 Sep; 15(9):2190-200. PubMed ID: 16943448
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX).
    Knapp O; Maier E; Benz R; Geny B; Popoff MR
    Biochim Biophys Acta; 2009 Dec; 1788(12):2584-93. PubMed ID: 19835840
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA).
    Beitzinger C; Stefani C; Kronhardt A; Rolando M; Flatau G; Lemichez E; Benz R
    PLoS One; 2012; 7(10):e46964. PubMed ID: 23056543
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Crystal structure of the engineered neutralizing antibody M18 complexed to domain 4 of the anthrax protective antigen.
    Leysath CE; Monzingo AF; Maynard JA; Barnett J; Georgiou G; Iverson BL; Robertus JD
    J Mol Biol; 2009 Apr; 387(3):680-93. PubMed ID: 19361425
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes.
    Comai M; Dalla Serra M; Coraiola M; Werner S; Colin DA; Monteil H; Prévost G; Menestrina G
    Mol Microbiol; 2002 Jun; 44(5):1251-67. PubMed ID: 12068809
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Phenylalanine-427 of anthrax protective antigen functions in both pore formation and protein translocation.
    Sun J; Lang AE; Aktories K; Collier RJ
    Proc Natl Acad Sci U S A; 2008 Mar; 105(11):4346-51. PubMed ID: 18334631
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preventing voltage-dependent gating of anthrax toxin channels using engineered disulfides.
    Anderson DS; Blaustein RO
    J Gen Physiol; 2008 Sep; 132(3):351-60. PubMed ID: 18725530
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Functions of phenylalanine residues within the beta-barrel stem of the anthrax toxin pore.
    Wang J; Vernier G; Fischer A; Collier RJ
    PLoS One; 2009 Jul; 4(7):e6280. PubMed ID: 19609431
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study.
    Yamini G; Kalu N; Nestorovich EM
    Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27854272
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore.
    Janowiak BE; Jennings-Antipov LD; Collier RJ
    Biochemistry; 2011 May; 50(17):3512-6. PubMed ID: 21425869
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation.
    Thoren KL; Worden EJ; Yassif JM; Krantz BA
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21555-60. PubMed ID: 19926859
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin.
    Beitzinger C; Bronnhuber A; Duscha K; Riedl Z; Huber-Lang M; Benz R; Hajós G; Barth H
    PLoS One; 2013; 8(6):e66099. PubMed ID: 23840407
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization.
    Liu S; Leppla SH
    J Biol Chem; 2003 Feb; 278(7):5227-34. PubMed ID: 12468536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.