These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 26170244)
1. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes. Howell B; Huynh B; Grill WM J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244 [TBL] [Abstract][Full Text] [Related]
2. Role of electrode design on the volume of tissue activated during deep brain stimulation. Butson CR; McIntyre CC J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937 [TBL] [Abstract][Full Text] [Related]
3. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Wei XF; Grill WM J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of high-perimeter electrode designs for deep brain stimulation. Howell B; Grill WM J Neural Eng; 2014 Aug; 11(4):046026. PubMed ID: 25029124 [TBL] [Abstract][Full Text] [Related]
5. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region. van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096 [TBL] [Abstract][Full Text] [Related]
6. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue. Gabran SR; Saad JH; Salama MM; Mansour RR Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439 [TBL] [Abstract][Full Text] [Related]
8. Sources and effects of electrode impedance during deep brain stimulation. Butson CR; Maks CB; McIntyre CC Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143 [TBL] [Abstract][Full Text] [Related]
9. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation. Huang WC; Lo YC; Chu CY; Lai HY; Chen YY; Chen SY Biomaterials; 2017 Apr; 122():141-153. PubMed ID: 28119154 [TBL] [Abstract][Full Text] [Related]
10. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. McIntyre CC; Butson CR; Maks CB; Noecker AM Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871 [TBL] [Abstract][Full Text] [Related]
11. High efficiency electrodes for deep brain stimulation. Grill WM; Wei XF Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3298-301. PubMed ID: 19964297 [TBL] [Abstract][Full Text] [Related]
12. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. Sabetian P; Popovic MR; Yoo PB J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960 [TBL] [Abstract][Full Text] [Related]
13. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode. Zhang TC; Grill WM J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730 [TBL] [Abstract][Full Text] [Related]
14. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Butson CR; McIntyre CC Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463 [TBL] [Abstract][Full Text] [Related]
15. Effective electrode configuration for selective stimulation with inner eye prostheses. Rattay F; Resatz S IEEE Trans Biomed Eng; 2004 Sep; 51(9):1659-64. PubMed ID: 15376514 [TBL] [Abstract][Full Text] [Related]
17. 3-D microfabricated electrodes for targeted deep brain stimulation. Laotaveerungrueng N; Lin CH; McCallum G; Rajgopal S; Steiner CP; Rezai AR; Mehregany M Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6493-6. PubMed ID: 19964441 [TBL] [Abstract][Full Text] [Related]
18. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation. Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845 [TBL] [Abstract][Full Text] [Related]
19. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry. Willsie AC; Dorval AD Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306 [TBL] [Abstract][Full Text] [Related]
20. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]