BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26170283)

  • 1. Functional expression of sodium-glucose transporters in cancer.
    Scafoglio C; Hirayama BA; Kepe V; Liu J; Ghezzi C; Satyamurthy N; Moatamed NA; Huang J; Koepsell H; Barrio JR; Wright EM
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4111-9. PubMed ID: 26170283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice.
    Sala-Rabanal M; Hirayama BA; Ghezzi C; Liu J; Huang SC; Kepe V; Koepsell H; Yu A; Powell DR; Thorens B; Wright EM; Barrio JR
    J Physiol; 2016 Aug; 594(15):4425-38. PubMed ID: 27018980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma.
    Scafoglio CR; Villegas B; Abdelhady G; Bailey ST; Liu J; Shirali AS; Wallace WD; Magyar CE; Grogan TR; Elashoff D; Walser T; Yanagawa J; Aberle DR; Barrio JR; Dubinett SM; Shackelford DB
    Sci Transl Med; 2018 Nov; 10(467):. PubMed ID: 30429355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SGLT2 and cancer.
    Wright EM
    Pflugers Arch; 2020 Sep; 472(9):1407-1414. PubMed ID: 32820343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-glucose cotransporters: new targets of cancer therapy?
    Madunić IV; Madunić J; Breljak D; Karaica D; Sabolić I
    Arh Hig Rada Toksikol; 2018 Dec; 69(4):278-285. PubMed ID: 30864374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.
    Kepe V; Scafoglio C; Liu J; Yong WH; Bergsneider M; Huang SC; Barrio JR; Wright EM
    J Neurooncol; 2018 Jul; 138(3):557-569. PubMed ID: 29525972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excretion of glucose analogue with SGLT2 affinity predicts response effectiveness to sodium glucose transporter 2 inhibitors in patients with type 2 diabetes mellitus.
    Geist BK; Brath H; Zisser L; Yu J; Fueger B; Nics L; Patronas EM; Kautzky-Willer A; Hacker M; Rasul S
    Eur J Nucl Med Mol Imaging; 2023 Aug; 50(10):3034-3041. PubMed ID: 37195445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [
    Matsusaka Y; Chen X; Arias-Loza P; Werner RA; Nose N; Sasaki T; Rowe SP; Pomper MG; Lapa C; Higuchi T
    Mol Imaging; 2022; 2022():4635171. PubMed ID: 35903251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.
    Kanwal A; Singh SP; Grover P; Banerjee SK
    Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity.
    Yoshii A; Nagoshi T; Kashiwagi Y; Kimura H; Tanaka Y; Oi Y; Ito K; Yoshino T; Tanaka TD; Yoshimura M
    Cardiovasc Diabetol; 2019 Jul; 18(1):85. PubMed ID: 31262297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes.
    Solini A; Rossi C; Mazzanti CM; Proietti A; Koepsell H; Ferrannini E
    Diabetes Obes Metab; 2017 Sep; 19(9):1289-1294. PubMed ID: 28419670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of SGLTs in rat brain.
    Yu AS; Hirayama BA; Timbol G; Liu J; Basarah E; Kepe V; Satyamurthy N; Huang SC; Wright EM; Barrio JR
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1277-84. PubMed ID: 20826762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.
    Castaneda F; Kinne RK
    Mol Cell Biochem; 2005 Dec; 280(1-2):91-8. PubMed ID: 16311909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.
    Wuest M; Hamann I; Bouvet V; Glubrecht D; Marshall A; Trayner B; Soueidan OM; Krys D; Wagner M; Cheeseman C; West F; Wuest F
    Mol Pharmacol; 2018 Feb; 93(2):79-89. PubMed ID: 29142019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.
    Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC
    Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
    Novikov A; Fu Y; Huang W; Freeman B; Patel R; van Ginkel C; Koepsell H; Busslinger M; Onishi A; Nespoux J; Vallon V
    Am J Physiol Renal Physiol; 2019 Jan; 316(1):F173-F185. PubMed ID: 30427222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of SGLT1 and SGLT2 inhibitors.
    Rieg T; Vallon V
    Diabetologia; 2018 Oct; 61(10):2079-2086. PubMed ID: 30132033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.