These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26170286)

  • 1. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-photon imaging of mouse brain structure and function through the intact skull.
    Wang T; Ouzounov DG; Wu C; Horton NG; Zhang B; Wu CH; Zhang Y; Schnitzer MJ; Xu C
    Nat Methods; 2018 Oct; 15(10):789-792. PubMed ID: 30202059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.
    Streich L; Boffi JC; Wang L; Alhalaseh K; Barbieri M; Rehm R; Deivasigamani S; Gross CT; Agarwal A; Prevedel R
    Nat Methods; 2021 Oct; 18(10):1253-1258. PubMed ID: 34594033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast holographic scattering compensation for deep tissue biological imaging.
    May MA; Barré N; Kummer KK; Kress M; Ritsch-Marte M; Jesacher A
    Nat Commun; 2021 Jul; 12(1):4340. PubMed ID: 34267207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues.
    Gao Y; Liu L; Yin Y; Liao J; Yu J; Wu T; Ye S; Li H; Zheng W
    Opt Express; 2020 Nov; 28(23):34935-34947. PubMed ID: 33182951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering.
    Kong L; Tang J; Cui M
    Opt Express; 2016 Jan; 24(2):1214-21. PubMed ID: 26832504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast wavefront shaping for two-photon brain imaging with multipatch correction.
    Blochet B; Akemann W; Gigan S; Bourdieu L
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2305593120. PubMed ID: 38100413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic imaging of mouse visual cortex using a thinned-skull preparation.
    Kelly EA; Majewska AK
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 21085093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue.
    Chaigneau E; Wright AJ; Poland SP; Girkin JM; Silver RA
    Opt Express; 2011 Nov; 19(23):22755-74. PubMed ID: 22109156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain.
    Ouzounov DG; Wang T; Wang M; Feng DD; Horton NG; Cruz-Hernández JC; Cheng YT; Reimer J; Tolias AS; Nishimura N; Xu C
    Nat Methods; 2017 Apr; 14(4):388-390. PubMed ID: 28218900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy.
    Abdeladim L; Matho KS; Clavreul S; Mahou P; Sintes JM; Solinas X; Arganda-Carreras I; Turney SG; Lichtman JW; Chessel A; Bemelmans AP; Loulier K; Supatto W; Livet J; Beaurepaire E
    Nat Commun; 2019 Apr; 10(1):1662. PubMed ID: 30971684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous multiplane imaging with reverberation two-photon microscopy.
    Beaulieu DR; Davison IG; Kılıç K; Bifano TG; Mertz J
    Nat Methods; 2020 Mar; 17(3):283-286. PubMed ID: 32042186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.
    Tang J; Germain RN; Cui M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8434-9. PubMed ID: 22586078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation.
    Marker DF; Tremblay ME; Lu SM; Majewska AK; Gelbard HA
    J Vis Exp; 2010 Sep; (43):. PubMed ID: 20972389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.
    Pillai RS; Boudoux C; Labroille G; Olivier N; Veilleux I; Farge E; Joffre M; Beaurepaire E
    Opt Express; 2009 Jul; 17(15):12741-52. PubMed ID: 19654680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive optics module for deep tissue multiphoton imaging in vivo.
    Rodríguez C; Chen A; Rivera JA; Mohr MA; Liang Y; Natan RG; Sun W; Milkie DE; Bifano TG; Chen X; Ji N
    Nat Methods; 2021 Oct; 18(10):1259-1264. PubMed ID: 34608309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.