These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26170315)

  • 61. Destabilization of colloidal suspensions by multivalent ions and polyelectrolytes: from screening to overcharging.
    Szilagyi I; Sadeghpour A; Borkovec M
    Langmuir; 2012 Apr; 28(15):6211-5. PubMed ID: 22468583
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review.
    Otsuki A
    Electrophoresis; 2018 Mar; 39(5-6):690-701. PubMed ID: 29330873
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure and stability of charged colloid-nanoparticle mixtures.
    Weight BM; Denton AR
    J Chem Phys; 2018 Mar; 148(11):114904. PubMed ID: 29566519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Forces between silica particles in the presence of multivalent cations.
    Valmacco V; Elzbieciak-Wodka M; Herman D; Trefalt G; Maroni P; Borkovec M
    J Colloid Interface Sci; 2016 Jun; 472():108-15. PubMed ID: 27016916
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.
    Gan Z; Xing X; Xu Z
    J Chem Phys; 2012 Jul; 137(3):034708. PubMed ID: 22830725
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of effective charges in the electrophoresis of highly charged colloids.
    Chatterji A; Horbach J
    J Phys Condens Matter; 2010 Dec; 22(49):494102. PubMed ID: 21406768
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.
    Gudarzi MM
    Langmuir; 2016 May; 32(20):5058-68. PubMed ID: 27143102
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Predicting aggregation rates of colloidal particles from direct force measurements.
    Ruiz-Cabello FJ; Trefalt G; Csendes Z; Sinha P; Oncsik T; Szilagyi I; Maroni P; Borkovec M
    J Phys Chem B; 2013 Oct; 117(39):11853-62. PubMed ID: 24015897
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
    Parsons DF; Boström M; Lo Nostro P; Ninham BW
    Phys Chem Chem Phys; 2011 Jul; 13(27):12352-67. PubMed ID: 21670834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aggregation of Colloidal Particles in the Presence of Multivalent Co-Ions: The Inverse Schulze-Hardy Rule.
    Cao T; Szilagyi I; Oncsik T; Borkovec M; Trefalt G
    Langmuir; 2015 Jun; 31(24):6610-4. PubMed ID: 26039868
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Macroion clustering in solutions and suspensions: the roles of microions and solvent.
    Schmitz KS
    J Phys Chem B; 2009 Mar; 113(9):2624-38. PubMed ID: 19708104
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Critical point of electrolyte mixtures.
    Hynninen AP; Dijkstra M; Panagiotopoulos AZ
    J Chem Phys; 2005 Aug; 123(8):084903. PubMed ID: 16164326
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Agglomeration and filtration of colloidal suspensions with DVLO interactions in simulation and experiment.
    Schäfer B; Hecht M; Harting J; Nirschl H
    J Colloid Interface Sci; 2010 Sep; 349(1):186-95. PubMed ID: 20570277
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water.
    Shen X; Bourg IC
    J Colloid Interface Sci; 2021 Feb; 584():610-621. PubMed ID: 33223241
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distinct Effects of Multivalent Macroion and Simple Ion on the Structure and Local Electric Environment of a Weak Polyelectrolyte in Aqueous Solution.
    Qu C; Jing B; Wang S; Zhu Y
    J Phys Chem B; 2017 Sep; 121(37):8829-8837. PubMed ID: 28832168
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions.
    Boström M; Deniz V; Franks GV; Ninham BW
    Adv Colloid Interface Sci; 2006 Nov; 123-126():5-15. PubMed ID: 16806030
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Non-additivity of pair interactions in charged colloids.
    Finlayson SD; Bartlett P
    J Chem Phys; 2016 Jul; 145(3):034905. PubMed ID: 27448904
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A self-consistent Ornstein-Zernike jellium for highly charged colloids (microgels) in suspensions with added salt.
    Aguirre-Manzo LA; González-Mozuelos P
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 34047280
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interpretation of conservative forces from Stokesian dynamic simulations of interfacial and confined colloids.
    Anekal SG; Bevan MA
    J Chem Phys; 2005 Jan; 122(3):34903. PubMed ID: 15740223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.