These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26170317)

  • 1. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination.
    Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA
    J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform.
    Yu R; Jo MC; Dang W
    Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high throughput screening assay for determination of chronological lifespan of yeast.
    Wu Z; Song L; Liu SQ; Huang D
    Exp Gerontol; 2011 Nov; 46(11):915-22. PubMed ID: 21871551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Platforms for Yeast-Based Aging Studies.
    Jo MC; Qin L
    Small; 2016 Nov; 12(42):5787-5801. PubMed ID: 27717149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.
    Zhang Y; Luo C; Zou K; Xie Z; Brandman O; Ouyang Q; Li H
    PLoS One; 2012; 7(11):e48275. PubMed ID: 23144860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput tracking of single yeast cells in a microfluidic imaging matrix.
    Falconnet D; Niemistö A; Taylor RJ; Ricicova M; Galitski T; Shmulevich I; Hansen CL
    Lab Chip; 2011 Feb; 11(3):466-73. PubMed ID: 21088765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging.
    Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ
    Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells.
    Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA
    Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic technologies for yeast replicative lifespan studies.
    Chen KL; Crane MM; Kaeberlein M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):262-269. PubMed ID: 27015709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Monitoring of Dissection Events of Single Budding Yeast in a Microfluidic Cell-Culturing Device Integrated With Electrical Impedance Biosensor.
    Zhu Z; Geng Y; Wang Y; Liu K; Yi Z; Zhao X; Ouyang S; Zheng K; Fan Y; Wang Z
    Front Bioeng Biotechnol; 2021; 9():783428. PubMed ID: 34778241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis.
    Aspert T; Hentsch D; Charvin G
    Elife; 2022 Aug; 11():. PubMed ID: 35976090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.
    Yang J; McCormick MA; Zheng J; Xie Z; Tsuchiya M; Tsuchiyama S; El-Samad H; Ouyang Q; Kaeberlein M; Kennedy BK; Li H
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11977-82. PubMed ID: 26351681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Rapid Yeast Chronological Lifespan Assay.
    Khawaja AA; Belak ZR; Eskiw CH; Harkness TAA
    Methods Mol Biol; 2021; 2196():229-233. PubMed ID: 32889725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform.
    Lee SS; Avalos Vizcarra I; Huberts DH; Lee LP; Heinemann M
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4916-20. PubMed ID: 22421136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.