These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26170317)

  • 21. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae.
    Delaney JR; Murakami C; Chou A; Carr D; Schleit J; Sutphin GL; An EH; Castanza AS; Fletcher M; Goswami S; Higgins S; Holmberg M; Hui J; Jelic M; Jeong KS; Kim JR; Klum S; Liao E; Lin MS; Lo W; Miller H; Moller R; Peng ZJ; Pollard T; Pradeep P; Pruett D; Rai D; Ros V; Schuster A; Singh M; Spector BL; Wende HV; Wang AM; Wasko BM; Olsen B; Kaeberlein M
    Exp Gerontol; 2013 Oct; 48(10):1006-13. PubMed ID: 23235143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A High-Throughput Screen for Yeast Replicative Lifespan Identifies Lifespan-Extending Compounds.
    Sarnoski EA; Liu P; Acar M
    Cell Rep; 2017 Nov; 21(9):2639-2646. PubMed ID: 29186697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional genomics of dietary restriction and longevity in yeast.
    Campos SE; DeLuna A
    Mech Ageing Dev; 2019 Apr; 179():36-43. PubMed ID: 30790575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae.
    Huberts DH; González J; Lee SS; Litsios A; Hubmann G; Wit EC; Heinemann M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11727-31. PubMed ID: 25071164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.
    Mei SC; Brenner C
    PLoS Biol; 2015 Jan; 13(1):e1002048. PubMed ID: 25633578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.
    Baiges I; Arola L
    J Frailty Aging; 2016; 5(3):186-90. PubMed ID: 29240368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level.
    Chen K; Rong N; Wang S; Luo C
    Integr Biol (Camb); 2020 Oct; 12(10):241-249. PubMed ID: 32995887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulated microgravity accelerates aging in Saccharomyces cerevisiae.
    Fukuda APM; Camandona VL; Francisco KJM; Rios-Anjos RM; Lucio do Lago C; Ferreira-Junior JR
    Life Sci Space Res (Amst); 2021 Feb; 28():32-40. PubMed ID: 33612178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.
    Molon M; Zadrag-Tecza R
    Biogerontology; 2016 Apr; 17(2):347-57. PubMed ID: 26481919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics.
    Jin M; Li Y; O'Laughlin R; Bittihn P; Pillus L; Tsimring LS; Hasty J; Hao N
    Cell Syst; 2019 Mar; 8(3):242-253.e3. PubMed ID: 30852250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.
    Jeong HH; Lee B; Jin SH; Jeong SG; Lee CS
    Lab Chip; 2016 Apr; 16(9):1698-707. PubMed ID: 27075732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet-based microfluidic platform for detecting agonistic peptides that are self-secreted by yeast expressing a G-protein-coupled receptor.
    Asama R; Liu CJS; Tominaga M; Cheng YR; Nakamura Y; Kondo A; Wang HY; Ishii J
    Microb Cell Fact; 2024 Apr; 23(1):104. PubMed ID: 38594681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast.
    Tsuchiya M; Dang N; Kerr EO; Hu D; Steffen KK; Oakes JA; Kennedy BK; Kaeberlein M
    Aging Cell; 2006 Dec; 5(6):505-14. PubMed ID: 17129213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Nuclear Exclusion of Hcm1 in Aging
    Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA
    G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic system for dynamic yeast cell imaging.
    Lee PJ; Helman NC; Lim WA; Hung PJ
    Biotechniques; 2008 Jan; 44(1):91-5. PubMed ID: 18254385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast replicative aging: a paradigm for defining conserved longevity interventions.
    Wasko BM; Kaeberlein M
    FEMS Yeast Res; 2014 Feb; 14(1):148-59. PubMed ID: 24119093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple microfluidic platform to study age-dependent protein abundance and localization changes in
    Cabrera M; Novarina D; Rempel IL; Veenhoff LM; Chang M
    Microb Cell; 2017 Apr; 4(5):169-174. PubMed ID: 28685142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.