These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26170407)
21. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity. Jin G; Kim IH; Kim Y Dev Comp Immunol; 2024 Feb; 151():105101. PubMed ID: 38000489 [TBL] [Abstract][Full Text] [Related]
22. The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Drace K; Darby C Appl Environ Microbiol; 2008 Jul; 74(14):4509-15. PubMed ID: 18515487 [TBL] [Abstract][Full Text] [Related]
23. Unique organization and regulation of the mrx fimbrial operon in Xenorhabdus nematophila. He H; Snyder HA; Forst S Microbiology (Reading); 2004 May; 150(Pt 5):1439-1446. PubMed ID: 15133105 [TBL] [Abstract][Full Text] [Related]
24. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Richards GR; Goodrich-Blair H Cell Microbiol; 2009 Jul; 11(7):1025-33. PubMed ID: 19374654 [TBL] [Abstract][Full Text] [Related]
25. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
27. Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cowles KN; Goodrich-Blair H Cell Microbiol; 2005 Feb; 7(2):209-19. PubMed ID: 15659065 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila. Forst S; Boylan B Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):43-9. PubMed ID: 12448704 [TBL] [Abstract][Full Text] [Related]
29. Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions. Orchard SS; Goodrich-Blair H Appl Environ Microbiol; 2005 Oct; 71(10):6254-9. PubMed ID: 16204546 [TBL] [Abstract][Full Text] [Related]
30. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Heungens K; Cowles CE; Goodrich-Blair H Mol Microbiol; 2002 Sep; 45(5):1337-53. PubMed ID: 12207701 [TBL] [Abstract][Full Text] [Related]
31. Flagellar Regulation and Virulence in the Entomopathogenic Bacteria-Xenorhabdus nematophila and Photorhabdus luminescens. Givaudan A; Lanois A Curr Top Microbiol Immunol; 2017; 402():39-51. PubMed ID: 28091933 [TBL] [Abstract][Full Text] [Related]
32. FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Lanois A; Jubelin G; Givaudan A Mol Microbiol; 2008 Apr; 68(2):516-33. PubMed ID: 18383616 [TBL] [Abstract][Full Text] [Related]
33. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Park Y; Herbert EE; Cowles CE; Cowles KN; Menard ML; Orchard SS; Goodrich-Blair H Cell Microbiol; 2007 Mar; 9(3):645-56. PubMed ID: 17002783 [TBL] [Abstract][Full Text] [Related]
35. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes. Cowles CE; Goodrich-Blair H J Bacteriol; 2008 Jun; 190(12):4121-8. PubMed ID: 18390667 [TBL] [Abstract][Full Text] [Related]
36. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871 [TBL] [Abstract][Full Text] [Related]
37. CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila. Herbert EE; Cowles KN; Goodrich-Blair H Appl Environ Microbiol; 2007 Dec; 73(24):7826-36. PubMed ID: 17951441 [TBL] [Abstract][Full Text] [Related]
38. FliZ is a global regulatory protein affecting the expression of flagellar and virulence genes in individual Xenorhabdus nematophila bacterial cells. Jubelin G; Lanois A; Severac D; Rialle S; Longin C; Gaudriault S; Givaudan A PLoS Genet; 2013 Oct; 9(10):e1003915. PubMed ID: 24204316 [TBL] [Abstract][Full Text] [Related]
39. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. Martens EC; Heungens K; Goodrich-Blair H J Bacteriol; 2003 May; 185(10):3147-54. PubMed ID: 12730175 [TBL] [Abstract][Full Text] [Related]
40. Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection. Jubelin G; Pagès S; Lanois A; Boyer MH; Gaudriault S; Ferdy JB; Givaudan A Environ Microbiol; 2011 May; 13(5):1271-84. PubMed ID: 21332625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]