These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26170428)

  • 1. Numerical studies of nitric oxide formation in nanosecond-pulsed discharge-stabilized flames of premixed methane/air.
    Bak MS; Cappelli MA
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge.
    Lefkowitz JK; Guo P; Rousso A; Ju Y
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.
    Adamovich IV; Li T; Lempert WR
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigations on Methane-Air Nanosecond Pulsed Dielectric Barrier Discharge Plasma-Assisted Combustion.
    Pan J; Meng W; Li S; Du J
    ACS Omega; 2020 Dec; 5(49):31891-31901. PubMed ID: 33344843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane-Air Plasma-Assisted Ignition Excited by Nanosecond Repetitively Pulsed Discharge: Numerical Modeling and Effect of Inert Gas.
    Bai C; Li S; Chen T; Chen X; Meng W; Pan J
    ACS Omega; 2021 Sep; 6(37):24156-24165. PubMed ID: 34568694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor.
    Barbosa S; Pilla G; Lacoste DA; Scouflaire P; Ducruix S; Laux CO; Veynante D
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames.
    Frank JH; Chen X; Patterson BD; Settersten TB
    Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Numerical Simulation of Head-On Quenching of Statistically Planar Turbulent Premixed Methane-Air Flames Using a Detailed Chemical Mechanism.
    Lai J; Klein M; Chakraborty N
    Flow Turbul Combust; 2018; 101(4):1073-1091. PubMed ID: 30613187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-assisted ignition and deflagration-to-detonation transition.
    Starikovskiy A; Aleksandrov N; Rakitin A
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):740-73. PubMed ID: 22213667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.
    Tsolas N; Lee JG; Yetter RA
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved saturated absorption measurements of OH in methane-air flames.
    Zizak G; Cignoli F; Benecchi S
    Appl Opt; 1987 Oct; 26(19):4293-7. PubMed ID: 20490224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air.
    Zhao ZL; Yang DZ; Wang WC; Yuan H; Zhang L; Wang S; Liu ZJ; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():186-94. PubMed ID: 26924210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.
    Li Y; Qi F
    Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy: An Inspiring Tool for Characterizing Turbulence-Combustion Interaction in Swirling Flames via Direct Numerical Simulations of Non-Premixed and Premixed Flames.
    Su J; Liu A; Xiao H; Luo K; Fan J
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame.
    Hammack SD; Carter CD; Gord JR; Lee T
    Appl Opt; 2012 Dec; 51(36):8817-24. PubMed ID: 23262621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.