These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26170432)

  • 1. New diagnostic methods for laser plasma- and microwave-enhanced combustion.
    Miles RB; Michael JB; Limbach CM; McGuire SD; Chng TL; Edwards MR; DeLuca NJ; Shneider MN; Dogariu A
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements.
    Zhang D; Li B; Gao Q; Li Z
    Appl Spectrosc; 2018 Dec; 72(12):1807-1813. PubMed ID: 29972316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.
    Wu Y; Zhang Z; Ombrello TM
    Opt Lett; 2013 Jul; 38(13):2286-8. PubMed ID: 23811904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX.
    LeBlanc BP
    Rev Sci Instrum; 2008 Oct; 79(10):10E737. PubMed ID: 19044553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially localized, see-through-wall temperature measurements in a flow reactor using radar REMPI.
    Wu Y; Gragston M; Zhang Z; Miller JD
    Opt Lett; 2017 Jan; 42(1):53-56. PubMed ID: 28059176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Thomson scattering system for high-flux linear plasma generator.
    van der Meiden HJ; Lof AR; van den Berg MA; Brons S; Donné AJ; van Eck HJ; Koelman PM; Koppers WR; Kruijt OG; Naumenko NN; Oyevaar T; Prins PR; Rapp J; Scholten J; Schram DC; Smeets PH; van der Star G; Tugarinov SN; Zeijlmans van Emmichoven PA
    Rev Sci Instrum; 2012 Dec; 83(12):123505. PubMed ID: 23277985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional temperature measurements in particle loaded technical flames by filtered Rayleigh scattering.
    Müller D; Pagel R; Burkert A; Wagner V; Paa W
    Appl Opt; 2014 Mar; 53(9):1750-8. PubMed ID: 24663450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional quantitative measurements of methyl radicals in methane/air flame.
    Wu Y; Zhang Z
    Appl Opt; 2015 Jan; 54(2):157-62. PubMed ID: 25967612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On using Rayleigh scattering for in situ spectral calibration of Thomson scattering diagnostics.
    Bozhenkov SA; Heym SJ; Beurskens MNA; Fuchert G; Pasch E; Scott ER; Wolf RC
    Rev Sci Instrum; 2019 Mar; 90(3):033505. PubMed ID: 30927799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.
    Zang HW; Li HL; Su Y; Fu Y; Hou MY; Baltuška A; Yamanouchi K; Xu H
    Opt Lett; 2018 Feb; 43(3):615-618. PubMed ID: 29400854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of Rayleigh scattering noise in sodium laser guide stars by hyperfine depolarization of fluorescence.
    Guillet de Chatellus H; Moldovan I; Fesquet V; Pique JP
    Opt Express; 2006 Nov; 14(24):11494-505. PubMed ID: 19529568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser activation and sensing of hydroxyl for velocimetry in reacting flows.
    Fisher JM; Brown AD; Lauriola DK; Slipchenko MN; Meyer TR
    Appl Opt; 2020 Dec; 59(34):10853-10861. PubMed ID: 33361906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of laser photofragmentation-resonance enhanced multiphoton ionization to ion mobility spectrometry.
    Headrick JM; Reichardt TA; Settersten TB; Bambha RP; Kliner DA
    Appl Opt; 2010 Apr; 49(11):2204-14. PubMed ID: 20390024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases.
    Gu Z; Ubachs W
    J Chem Phys; 2014 Sep; 141(10):104320. PubMed ID: 25217929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling Multiphoton Ionization and Dissociation Channels in Molecular Oxygen Using Photoelectron-Photoion Coincidence Imaging.
    Caballo A; Huits AJTM; Parker DH; Horke DA
    J Phys Chem A; 2023 Jan; 127(1):92-98. PubMed ID: 36542330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry for detection of nitrogen containing aliphatic and aromatic compounds: resonance-enhanced multiphoton ionization spectroscopic investigation and on-line analytical application.
    Streibel T; Hafner K; Mühlberger F; Adam T; Zimmermann R
    Appl Spectrosc; 2006 Jan; 60(1):72-9. PubMed ID: 16454915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.