These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 26170447)

  • 21. Combinatorial Cis-regulation in Saccharomyces Species.
    Spivak AT; Stormo GD
    G3 (Bethesda); 2016 Jan; 6(3):653-67. PubMed ID: 26772747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal activity modifies the chromatin accessibility landscape in the adult brain.
    Su Y; Shin J; Zhong C; Wang S; Roychowdhury P; Lim J; Kim D; Ming GL; Song H
    Nat Neurosci; 2017 Mar; 20(3):476-483. PubMed ID: 28166220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development.
    Yang X; Hu B; Liao J; Qiao Y; Chen Y; Qian Y; Feng S; Yu F; Dong J; Hou Y; Xu H; Wang R; Peng G; Li J; Tang F; Jing N
    Cell Res; 2019 Nov; 29(11):911-926. PubMed ID: 31591447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changing and stable chromatin accessibility supports transcriptional overhaul during neural stem cell activation and is altered with age.
    Maybury-Lewis SY; Brown AK; Yeary M; Sloutskin A; Dhakal S; Juven-Gershon T; Webb AE
    Aging Cell; 2021 Nov; 20(11):e13499. PubMed ID: 34687484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. H3K27me3 Signal in the Cis Regulatory Elements Reveals the Differentiation Potential of Progenitors During Drosophila Neuroglial Development.
    Chen X; Ye Y; Gu L; Sun J; Du Y; Liu WJ; Li W; Zhang X; Jiang C
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):297-304. PubMed ID: 31195140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosome conformation elucidates regulatory relationships in developing human brain.
    Won H; de la Torre-Ubieta L; Stein JL; Parikshak NN; Huang J; Opland CK; Gandal MJ; Sutton GJ; Hormozdiari F; Lu D; Lee C; Eskin E; Voineagu I; Ernst J; Geschwind DH
    Nature; 2016 Oct; 538(7626):523-527. PubMed ID: 27760116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis.
    Attanasio C; Nord AS; Zhu Y; Blow MJ; Biddie SC; Mendenhall EM; Dixon J; Wright C; Hosseini R; Akiyama JA; Holt A; Plajzer-Frick I; Shoukry M; Afzal V; Ren B; Bernstein BE; Rubin EM; Visel A; Pennacchio LA
    Genome Res; 2014 Jun; 24(6):920-9. PubMed ID: 24752179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin Regulation of Neuronal Maturation and Plasticity.
    Gallegos DA; Chan U; Chen LF; West AE
    Trends Neurosci; 2018 May; 41(5):311-324. PubMed ID: 29530320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of enhancer action: the known and the unknown.
    Panigrahi A; O'Malley BW
    Genome Biol; 2021 Apr; 22(1):108. PubMed ID: 33858480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons.
    Li J; Sun L; Peng XL; Yu XM; Qi SJ; Lu ZJ; Han JJ; Shen Q
    PLoS Genet; 2021 Mar; 17(3):e1009355. PubMed ID: 33760820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation.
    Shang Z; Chen D; Wang Q; Wang S; Deng Q; Wu L; Liu C; Ding X; Wang S; Zhong J; Zhang D; Cai X; Zhu S; Yang H; Liu L; Fink JL; Chen F; Liu X; Gao Z; Xu X
    Gigascience; 2018 Nov; 7(11):. PubMed ID: 30239706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes.
    Fan K; Moore JE; Zhang XO; Weng Z
    Nucleic Acids Res; 2021 Jun; 49(10):5705-5725. PubMed ID: 33978759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.
    Slattery M; Ma L; Spokony RF; Arthur RK; Kheradpour P; Kundaje A; Nègre N; Crofts A; Ptashkin R; Zieba J; Ostapenko A; Suchy S; Victorsen A; Jameel N; Grundstad AJ; Gao W; Moran JR; Rehm EJ; Grossman RL; Kellis M; White KP
    Genome Res; 2014 Jul; 24(7):1224-35. PubMed ID: 24985916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq.
    Vanhille L; Griffon A; Maqbool MA; Zacarias-Cabeza J; Dao LT; Fernandez N; Ballester B; Andrau JC; Spicuglia S
    Nat Commun; 2015 Apr; 6():6905. PubMed ID: 25872643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified architecture of transcriptional regulatory elements.
    Andersson R; Sandelin A; Danko CG
    Trends Genet; 2015 Aug; 31(8):426-33. PubMed ID: 26073855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb.
    Cotney J; Leng J; Oh S; DeMare LE; Reilly SK; Gerstein MB; Noonan JP
    Genome Res; 2012 Jun; 22(6):1069-80. PubMed ID: 22421546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of chromatin dynamics in immune cell development.
    Winter DR; Amit I
    Immunol Rev; 2014 Sep; 261(1):9-22. PubMed ID: 25123274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions.
    Yaragatti M; Basilico C; Dailey L
    Genome Res; 2008 Jun; 18(6):930-8. PubMed ID: 18441229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling.
    Alyagor I; Berkun V; Keren-Shaul H; Marmor-Kollet N; David E; Mayseless O; Issman-Zecharya N; Amit I; Schuldiner O
    Dev Cell; 2018 Oct; 47(1):38-52.e6. PubMed ID: 30300589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program.
    Pataskar A; Jung J; Smialowski P; Noack F; Calegari F; Straub T; Tiwari VK
    EMBO J; 2016 Jan; 35(1):24-45. PubMed ID: 26516211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.