These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26170647)

  • 61. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dual Kinect v2 system can capture lower limb kinematics reasonably well in a clinical setting: concurrent validity of a dual camera markerless motion capture system in professional football players.
    Kotsifaki A; Whiteley R; Hansen C
    BMJ Open Sport Exerc Med; 2018; 4(1):e000441. PubMed ID: 30622729
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lower extremity jumping mechanics of female athletes with and without patellofemoral pain before and after exertion.
    Willson JD; Binder-Macleod S; Davis IS
    Am J Sports Med; 2008 Aug; 36(8):1587-96. PubMed ID: 18448577
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatio-temporal separation of roll and pitch balance-correcting commands in humans.
    Grüneberg C; Duysens J; Honegger F; Allum JH
    J Neurophysiol; 2005 Nov; 94(5):3143-58. PubMed ID: 16033938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Accuracy of a novel marker tracking approach based on the low-cost Microsoft Kinect v2 sensor.
    Timmi A; Coates G; Fortin K; Ackland D; Bryant AL; Gordon I; Pivonka P
    Med Eng Phys; 2018 Sep; 59():63-69. PubMed ID: 29983277
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Accuracy of classifying the movement strategy in the functional reach test using a markerless motion capture system.
    Tanaka R; Ishikawa Y; Yamasaki T; Diez A
    J Med Eng Technol; 2019 Feb; 43(2):133-138. PubMed ID: 31232123
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deep Learning-Based Upper Limb Functional Assessment Using a Single Kinect v2 Sensor.
    Ma Y; Liu D; Cai L
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235436
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development and Evaluation of a Kinect-based Rapid Movement Therapy Training Platform for Balance Rehabilitation.
    Junata M; Cheng KCC; Man HS; Wang X; Tong RKY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2345-2348. PubMed ID: 30440877
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Validity of an Interactive Functional Reach Test.
    Galen SS; Pardo V; Wyatt D; Diamond A; Brodith V; Pavlov A
    Games Health J; 2015 Aug; 4(4):278-84. PubMed ID: 26182215
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Suitability of Kinect for measuring whole body movement patterns during exergaming.
    van Diest M; Stegenga J; Wörtche HJ; Postema K; Verkerke GJ; Lamoth CJ
    J Biomech; 2014 Sep; 47(12):2925-32. PubMed ID: 25173920
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Measurement of body joint angles for physical therapy based on mean shift tracking using two low cost Kinect images.
    Chen YC; Lee HJ; Lin KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():703-6. PubMed ID: 26736359
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simplified digital balance assessment in typically developing school children.
    Heidt C; Vrankovic M; Mendoza A; Hollander K; Dreher T; Rueger M
    Gait Posture; 2021 Feb; 84():389-394. PubMed ID: 33485024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Validation of joint angle measurements: comparison of a novel low-cost marker-less system with an industry standard marker-based system.
    Bahadori S; Davenport P; Immins T; Wainwright TW
    J Med Eng Technol; 2019 Jan; 43(1):19-24. PubMed ID: 31033375
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Determination of repeatability of kinect sensor.
    Bonnechère B; Sholukha V; Jansen B; Omelina L; Rooze M; Van Sint Jan S
    Telemed J E Health; 2014 May; 20(5):451-3. PubMed ID: 24617290
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluating activities of daily living using an infrared depth sensor: KINECT
    Kusunoki M; Kohama T; Yamada Y; Fujita E; Okada S; Maeda A; Takeshima N
    Disabil Rehabil Assist Technol; 2019 May; 14(4):368-378. PubMed ID: 29522365
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Balance strategy in hoverboard control.
    Shushtari M; Takagi A; Lee J; Burdet E; Arami A
    Sci Rep; 2022 Mar; 12(1):4509. PubMed ID: 35296707
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training.
    Vonstad EK; Su X; Vereijken B; Bach K; Nilsen JH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291687
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Validity of a novel method to measure vertical oscillation during running using a depth camera.
    Kobsar D; Osis ST; Jacob C; Ferber R
    J Biomech; 2019 Mar; 85():182-186. PubMed ID: 30660379
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SU-E-I-92: Accuracy Evaluation of Depth Data in Microsoft Kinect.
    Kozono K; Aoki M; Ono M; Kamikawa Y; Arimura H; Toyofuku F
    Med Phys; 2012 Jun; 39(6Part5):3646. PubMed ID: 28517624
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinect v2 tracked Body Joint Smoothing for Kinematic Analysis in Musculoskeletal Disorders.
    Mangal NK; Tiwari AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5769-5772. PubMed ID: 33019285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.