These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26170647)

  • 81. Pedobarographic evaluation of body weight distribution on the lower limbs and balance after derotation corticotomies using the Ilizarov method.
    Morasiewicz P; Dragan S
    Acta Bioeng Biomech; 2013; 15(2):91-6. PubMed ID: 23952018
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Analysis of muscle activation in lower extremity for static balance.
    Chakravarty K; Chatterjee D; Das RK; Tripathy SR; Sinha A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4118-4122. PubMed ID: 29060803
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Accurate upper body rehabilitation system using kinect.
    Sinha S; Bhowmick B; Chakravarty K; Sinha A; Das A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4605-4609. PubMed ID: 28269301
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function.
    Bertram J; Krüger T; Röhling HM; Jelusic A; Mansow-Model S; Schniepp R; Wuehr M; Otte K
    PLoS One; 2023; 18(1):e0279697. PubMed ID: 36701322
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Accurate estimation of joint motion trajectories for rehabilitation using Kinect.
    Sinha S; Bhowmick B; Sinha A; Das A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3864-3867. PubMed ID: 29060741
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Can segmental model reductions quantify whole-body balance accurately during dynamic activities?
    Jamkrajang P; Robinson MA; Limroongreungrat W; Vanrenterghem J
    Gait Posture; 2017 Jul; 56():37-41. PubMed ID: 28494320
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Kinematic and Kinetic Validation of an Improved Depth Camera Motion Assessment System Using Rigid Bodies.
    Matthew RP; Seko S; Bajcsy R; Lotz J
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1784-1793. PubMed ID: 30281504
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Investigating the impact of a motion capture system on Microsoft Kinect v2 recordings: A caution for using the technologies together.
    Naeemabadi M; Dinesen B; Andersen OK; Hansen J
    PLoS One; 2018; 13(9):e0204052. PubMed ID: 30216382
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Development and preliminary validation of an interactive remote physical therapy system.
    Mishra AK; Skubic M; Abbott C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():190-3. PubMed ID: 26736232
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Novel Method of Human Joint Prediction in an Occlusion Scene by Using Low-cost Motion Capture Technique.
    Niu J; Wang X; Wang D; Ran L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085653
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dynamic Balance Measurement and Quantitative Assessment Using Wearable Plantar-Pressure Insoles in a Pose-Sensed Virtual Environment.
    Lou C; Pang C; Jing C; Wang S; He X; Liu X; Huang L; Lin F; Liu X; Wang H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513590
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Real time RULA assessment using Kinect v2 sensor.
    Manghisi VM; Uva AE; Fiorentino M; Bevilacqua V; Trotta GF; Monno G
    Appl Ergon; 2017 Nov; 65():481-491. PubMed ID: 28283174
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A new optical technique to monitor joint motion using position sensitive detector.
    Jung GI; Park BK; Kim JS; Lee TH; Choi JH; Oh HB; Kim AH; Goh BJ; Kim JW; Lee KS; Jun JH
    Technol Health Care; 2015; 23 Suppl 2():S473-80. PubMed ID: 26410514
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Experimental Validation of Depth Cameras for the Parameterization of Functional Balance of Patients in Clinical Tests.
    Moreno FÁ; Merchán-Baeza JA; González-Sánchez M; González-Jiménez J; Cuesta-Vargas AI
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28241455
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The development and evaluation of a program for leg-strengthening exercises and balance assessment using Kinect.
    Choi JS; Kang DW; Seo JW; Kim DH; Yang ST; Tack GR
    J Phys Ther Sci; 2016 Jan; 28(1):33-7. PubMed ID: 26957724
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evaluating the Accuracy of the Azure Kinect and Kinect v2.
    Kurillo G; Hemingway E; Cheng ML; Cheng L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408082
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Validity of the microsoft kinect system in assessment of compensatory stepping behavior during standing and treadmill walking.
    Shani G; Shapiro A; Oded G; Dima K; Melzer I
    Eur Rev Aging Phys Act; 2017; 14():4. PubMed ID: 28286578
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Game-based Evaluation of Whole-body Movement Functions with CoM Stability and Motion Smoothness.
    Kojima M; Kutsuzawa K; Owaki D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4354-4357. PubMed ID: 36086233
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A new kinematic dataset of lower limbs action for balance testing.
    Dong A; Wang F; Shuai Z; Zhang K; Qian D; Tian Y
    Sci Data; 2023 Apr; 10(1):209. PubMed ID: 37059747
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Accuracy evaluation of the Kinect v2 sensor during dynamic movements in a rehabilitation scenario.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Longhi S; Romeo L; Russi SN; Verdini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5409-5412. PubMed ID: 28269481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.