These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26171112)

  • 21. Diabetes as a risk factor to cancer: functional role of fermented papaya preparation as phytonutraceutical adjunct in the treatment of diabetes and cancer.
    Aruoma OI; Somanah J; Bourdon E; Rondeau P; Bahorun T
    Mutat Res; 2014 Oct; 768():60-8. PubMed ID: 24769427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function.
    Pi J; Zhang Q; Fu J; Woods CG; Hou Y; Corkey BE; Collins S; Andersen ME
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):77-83. PubMed ID: 19501608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.
    Højlund K
    Dan Med J; 2014 Jul; 61(7):B4890. PubMed ID: 25123125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.
    Wairagu PM; Phan AN; Kim MK; Han J; Kim HW; Choi JW; Kim KW; Cha SK; Park KH; Jeong Y
    Cancer Biol Ther; 2015; 16(3):484-92. PubMed ID: 25701261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study.
    Mason SA; Della Gatta PA; Snow RJ; Russell AP; Wadley GD
    Free Radic Biol Med; 2016 Apr; 93():227-38. PubMed ID: 26774673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting type 2 diabetes.
    Schwanstecher C; Schwanstecher M
    Handb Exp Pharmacol; 2011; (203):1-33. PubMed ID: 21484565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.
    Kaneto H; Katakami N; Matsuhisa M; Matsuoka TA
    Mediators Inflamm; 2010; 2010():453892. PubMed ID: 20182627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic switching in the hypoglycemic and antitumor effects of metformin on high glucose induced HepG2 cells.
    Lv Y; Tian N; Wang J; Yang M; Kong L
    J Pharm Biomed Anal; 2018 Jul; 156():153-162. PubMed ID: 29705631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metformin and Breast Cancer: Molecular Targets.
    Faria J; Negalha G; Azevedo A; Martel F
    J Mammary Gland Biol Neoplasia; 2019 Jun; 24(2):111-123. PubMed ID: 30903363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melatonin and Oxidative Stress in the Diabetic State: Clinical Implications and Potential Therapeutic Applications.
    Espino J; Rodríguez AB; Pariente JA
    Curr Med Chem; 2019; 26(22):4178-4190. PubMed ID: 29637854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can thiazolidinediones delay disease progression in type 2 diabetes?
    Leiter LA
    Curr Med Res Opin; 2006 Jun; 22(6):1193-201. PubMed ID: 16846552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress.
    Xu Y; Tang G; Zhang C; Wang N; Feng Y
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of glycemic traits, type 2 diabetes and metformin use on breast and prostate cancer risk: a Mendelian randomization study.
    Au Yeung SL; Schooling CM
    BMJ Open Diabetes Res Care; 2019; 7(1):e000872. PubMed ID: 31908803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thioredoxin-mimetic peptides (TXM) inhibit inflammatory pathways associated with high-glucose and oxidative stress.
    Lejnev K; Khomsky L; Bokvist K; Mistriel-Zerbib S; Naveh T; Farb TB; Alsina-Fernandez J; Atlas D
    Free Radic Biol Med; 2016 Oct; 99():557-571. PubMed ID: 27658743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protection of pancreatic beta-cells: is it feasible?
    Bonora E
    Nutr Metab Cardiovasc Dis; 2008 Jan; 18(1):74-83. PubMed ID: 18096375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions.
    Kaneto H; Matsuoka TA
    Int J Mol Sci; 2012 Oct; 13(10):13680-90. PubMed ID: 23202973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative stress, glucose metabolism, and the prevention of type 2 diabetes: pathophysiological insights.
    Shah S; Iqbal M; Karam J; Salifu M; McFarlane SI
    Antioxid Redox Signal; 2007 Jul; 9(7):911-29. PubMed ID: 17508914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.
    Gerber PA; Rutter GA
    Antioxid Redox Signal; 2017 Apr; 26(10):501-518. PubMed ID: 27225690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of CD36 in Type 2 Diabetes Mellitus: β-Cell Dysfunction and Beyond.
    Moon JS; Karunakaran U; Suma E; Chung SM; Won KC
    Diabetes Metab J; 2020 Apr; 44(2):222-233. PubMed ID: 32347024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.