BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1348 related articles for article (PubMed ID: 26171115)

  • 41. Advanced Mitochondrial Respiration Assay for Evaluation of Mitochondrial Dysfunction in Alzheimer's Disease.
    Grimm A; Schmitt K; Eckert A
    Methods Mol Biol; 2016; 1303():171-83. PubMed ID: 26235066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.
    Padmanabhan J; Levy M; Dickson DW; Potter H
    Brain; 2006 Nov; 129(Pt 11):3020-34. PubMed ID: 16987932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autophagy and Tau Protein.
    Hamano T; Enomoto S; Shirafuji N; Ikawa M; Yamamura O; Yen SH; Nakamoto Y
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer's Disease: Role of Glutathione and Metal Ions.
    Roy RG; Mandal PK; Maroon JC
    ACS Chem Neurosci; 2023 Sep; 14(17):2944-2954. PubMed ID: 37561556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium dysregulation in Alzheimer's disease.
    Bojarski L; Herms J; Kuznicki J
    Neurochem Int; 2008; 52(4-5):621-33. PubMed ID: 18035450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer's disease.
    Boche D; Donald J; Love S; Harris S; Neal JW; Holmes C; Nicoll JA
    Acta Neuropathol; 2010 Jul; 120(1):13-20. PubMed ID: 20532897
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GSK-3 and Tau: A Key Duet in Alzheimer's Disease.
    Sayas CL; Ávila J
    Cells; 2021 Mar; 10(4):. PubMed ID: 33804962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy.
    Cente M; Filipcik P; Pevalova M; Novak M
    Eur J Neurosci; 2006 Aug; 24(4):1085-90. PubMed ID: 16930434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies?
    Alavi Naini SM; Soussi-Yanicostas N
    Oxid Med Cell Longev; 2015; 2015():151979. PubMed ID: 26576216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress.
    Caldeira GL; Ferreira IL; Rego AC
    J Alzheimers Dis; 2013; 34(1):115-31. PubMed ID: 23364141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A
    Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease.
    Zhang F; Niu L; Li S; Le W
    ACS Chem Neurosci; 2019 Feb; 10(2):902-909. PubMed ID: 30412668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spreading of amyloid, tau, and microvascular pathology in Alzheimer's disease: findings from neuropathological and neuroimaging studies.
    Thal DR; Attems J; Ewers M
    J Alzheimers Dis; 2014; 42 Suppl 4():S421-9. PubMed ID: 25227313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New age of neuroproteomics in Alzheimer's disease research.
    Kovacech B; Zilka N; Novak M
    Cell Mol Neurobiol; 2009 Sep; 29(6-7):799-805. PubMed ID: 19225878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of cell cycle proteins in transgenic mice in response to neuronal loss but not amyloid-beta and tau pathology.
    Lopes JP; Blurton-Jones M; Yamasaki TR; Agostinho P; LaFerla FM
    J Alzheimers Dis; 2009; 16(3):541-9. PubMed ID: 19276549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of RAGE in Alzheimer's Disease.
    Cai Z; Liu N; Wang C; Qin B; Zhou Y; Xiao M; Chang L; Yan LJ; Zhao B
    Cell Mol Neurobiol; 2016 May; 36(4):483-95. PubMed ID: 26175217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of tau oligomers in the onset of Alzheimer's disease neuropathology.
    Cárdenas-Aguayo Mdel C; Gómez-Virgilio L; DeRosa S; Meraz-Ríos MA
    ACS Chem Neurosci; 2014 Dec; 5(12):1178-91. PubMed ID: 25268947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease.
    Cioffi F; Adam RHI; Broersen K
    J Alzheimers Dis; 2019; 72(4):981-1017. PubMed ID: 31744008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration.
    Wang JZ; Wang ZH
    Exp Gerontol; 2015 Aug; 68():82-6. PubMed ID: 25777063
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis.
    Uddin MS; Mamun AA; Labu ZK; Hidalgo-Lanussa O; Barreto GE; Ashraf GM
    J Cell Physiol; 2019 Jun; 234(6):8094-8112. PubMed ID: 30362531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 68.