These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26171667)

  • 21. Atomic Simulation of Nanoindentation on the Regular Wrinkled Graphene Sheet.
    Wang R; Pang H; Li M; Lai L
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping.
    Chen S; Li Q; Zhang Q; Qu Y; Ji H; Ruoff RS; Cai W
    Nanotechnology; 2012 Sep; 23(36):365701. PubMed ID: 22910228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abnormal Raman Characteristics of Graphene Originating from Contact Interface Inhomogeneity.
    Xu C; Yao Q; Du H; Hong C; Xue T; Kang Y; Li Q
    ACS Appl Mater Interfaces; 2021 May; 13(18):22040-22046. PubMed ID: 33906349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations.
    Rhee D; Paci JT; Deng S; Lee WK; Schatz GC; Odom TW
    ACS Nano; 2020 Jan; 14(1):166-174. PubMed ID: 31675210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suspended monolayer graphene under true uniaxial deformation.
    Polyzos I; Bianchi M; Rizzi L; Koukaras EN; Parthenios J; Papagelis K; Sordan R; Galiotis C
    Nanoscale; 2015 Aug; 7(30):13033-42. PubMed ID: 26172517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene wrinkling: formation, evolution and collapse.
    Wang C; Liu Y; Lan L; Tan H
    Nanoscale; 2013 May; 5(10):4454-61. PubMed ID: 23584468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uniaxial Strain Redistribution in Corrugated Graphene: Clamping, Sliding, Friction, and 2D Band Splitting.
    Wang X; Tantiwanichapan K; Christopher JW; Paiella R; Swan AK
    Nano Lett; 2015 Sep; 15(9):5969-75. PubMed ID: 26218679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface.
    Chen W; Gui X; Liang B; Liu M; Lin Z; Zhu Y; Tang Z
    ACS Appl Mater Interfaces; 2016 May; 8(17):10977-84. PubMed ID: 27111911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.
    Wagner S; Dieing T; Centeno A; Zurutuza A; Smith AD; Östling M; Kataria S; Lemme MC
    Nano Lett; 2017 Mar; 17(3):1504-1511. PubMed ID: 28140595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
    Androulidakis C; Koukaras EN; Rahova J; Sampathkumar K; Parthenios J; Papagelis K; Frank O; Galiotis C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26593-26601. PubMed ID: 28722403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress transfer mechanisms at the submicron level for graphene/polymer systems.
    Anagnostopoulos G; Androulidakis C; Koukaras EN; Tsoukleri G; Polyzos I; Parthenios J; Papagelis K; Galiotis C
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4216-23. PubMed ID: 25644121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of U-Shaped Graphene Domains on Copper Foil by Chemical Vapor Deposition.
    Pan M; Wang C; Li HF; Xie N; Wu P; Wang XD; Zeng Z; Deng S; Dai GP
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets.
    Kwieciñski W; Sotthewes K; Poelsema B; Zandvliet HJW; Bampoulis P
    J Colloid Interface Sci; 2017 Nov; 505():776-782. PubMed ID: 28666222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen Induced Etching Features of Wrinkled Graphene Domains.
    Li Q; Li F; Li Y; Du Y; Shih TM; Kan E
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions.
    Shaina PR; George L; Yadav V; Jaiswal M
    J Phys Condens Matter; 2016 Mar; 28(8):085301. PubMed ID: 26823443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities.
    Yokaribas V; Wagner S; Schneider DS; Friebertshäuser P; Lemme MC; Fritzen CP
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.