These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26171732)

  • 1. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study.
    Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB
    Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine.
    Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D
    Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-target loss in ornamental nurseries with different spray techniques.
    Zhu H; Derksen RC; Krause CR; Zondag RH
    Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model.
    Bird SL; Perry SG; Ray SL; Teske ME
    Environ Toxicol Chem; 2002 Mar; 21(3):672-81. PubMed ID: 11878481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of spray drift- and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa.
    Schulz R
    Chemosphere; 2001 Nov; 45(4-5):543-51. PubMed ID: 11680750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of air support on droplet characteristics and spray drift.
    Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B
    Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect drift assessment means. Part 3: field drift experiments.
    Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of realtime spray drift using RTDrift Gaussian advection-diffusion model.
    Lebeau F; Verstraete A; Schiffers B; Destain MF
    Commun Agric Appl Biol Sci; 2009; 74(1):11-24. PubMed ID: 20218507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative assessment of 27 current-use pesticides in air at 20 sampling sites across Africa.
    Fuhrimann S; Klánová J; Přibylová P; Kohoutek J; Dalvie MA; Röösli M; Degrendele C
    Chemosphere; 2020 Nov; 258():127333. PubMed ID: 32947666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island.
    Garron CA; Davis KC; Ernst WR
    Pest Manag Sci; 2009 Jun; 65(6):688-96. PubMed ID: 19278022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.
    Hewitt AJ; Solomon KR; Marshall EJ
    J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and field validation of an indicator to assess the relative mobility and risk of pesticides in the Lourens River catchment, South Africa.
    Dabrowski JM; Balderacchi M
    Chemosphere; 2013 Nov; 93(10):2433-43. PubMed ID: 24059975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary pesticide drift profiles from a peach orchard.
    Zivan O; Bohbot-Raviv Y; Dubowski Y
    Chemosphere; 2017 Jun; 177():303-310. PubMed ID: 28314235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece.
    Kasiotis KM; Glass CR; Tsakirakis AN; Machera K
    Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.