These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 26171756)
1. Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Perets EA; Indrasekara AS; Kurmis A; Atlasevich N; Fabris L; Arslanoglu J Analyst; 2015 Sep; 140(17):5971-80. PubMed ID: 26171756 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A Wei Q; Lin J; Liu F; Wen C; Li N; Huang G; Luo Z Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775290 [TBL] [Abstract][Full Text] [Related]
5. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
7. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Song C; Wang Z; Zhang R; Yang J; Tan X; Cui Y Biosens Bioelectron; 2009 Dec; 25(4):826-31. PubMed ID: 19765972 [TBL] [Abstract][Full Text] [Related]
9. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331 [TBL] [Abstract][Full Text] [Related]
10. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
11. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of novel gold mesoflowers as SERS tags for immunoassay with improved sensitivity. Song C; Min L; Zhou N; Yang Y; Su S; Huang W; Wang L ACS Appl Mater Interfaces; 2014 Dec; 6(24):21842-50. PubMed ID: 25089331 [TBL] [Abstract][Full Text] [Related]
14. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy. Ren X; Tan E; Lang X; You T; Jiang L; Zhang H; Yin P; Guo L Phys Chem Chem Phys; 2013 Sep; 15(34):14196-201. PubMed ID: 23873410 [TBL] [Abstract][Full Text] [Related]
15. Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays. Wang G; Park HY; Lipert RJ; Porter MD Anal Chem; 2009 Dec; 81(23):9643-50. PubMed ID: 19874000 [TBL] [Abstract][Full Text] [Related]
16. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering. Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422 [TBL] [Abstract][Full Text] [Related]
17. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids]. Li SJ; Qiu LQ; Cao PG; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331 [TBL] [Abstract][Full Text] [Related]
18. Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering. Chen K; Han H; Luo Z Analyst; 2012 Mar; 137(5):1259-64. PubMed ID: 22282767 [TBL] [Abstract][Full Text] [Related]
19. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955 [TBL] [Abstract][Full Text] [Related]
20. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]