BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26172107)

  • 1. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
    Roberts DA; Cole AJ; Paul NA; de Nys R
    J Environ Manage; 2015 Sep; 161():173-180. PubMed ID: 26172107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2016 Jan; 165():117-123. PubMed ID: 26413805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.
    Roberts DA; de Nys R
    J Environ Manage; 2016 Mar; 169():253-60. PubMed ID: 26773429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
    Kidgell JT; de Nys R; Hu Y; Paul NA; Roberts DA
    PLoS One; 2014; 9(2):e94706. PubMed ID: 24919058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red mud-biochar composites (co-pyrolyzed red mud-plant materials): Characteristics and improved efficacy on the treatment of acidic mine water and trace element-contaminated soils.
    Qin J; Wang X; Deng M; Li H; Lin C
    Sci Total Environ; 2022 Oct; 844():157062. PubMed ID: 35809730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.
    Phillips CL; Trippe KM; Whittaker G; Griffith SM; Johnson MG; Banowetz GM
    J Environ Qual; 2016 May; 45(3):1013-20. PubMed ID: 27136169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial endophytes and compost improve plant growth in two contrasting types of hard rock mining waste.
    Creamer CA; Leewis MC; Governali FC; Freeman JL; Gray F; Wright EG; Foster AL
    Int J Phytoremediation; 2023; 25(6):781-788. PubMed ID: 36041068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can biochar reclaim coal mine spoil?
    Ghosh D; Maiti SK
    J Environ Manage; 2020 Oct; 272():111097. PubMed ID: 32854895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil.
    Teodoro M; Trakal L; Gallagher BN; Šimek P; Soudek P; Pohořelý M; Beesley L; Jačka L; Kovář M; Seyedsadr S; Mohan D
    Chemosphere; 2020 Mar; 242():125255. PubMed ID: 31896180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings.
    Munir MAM; Liu G; Yousaf B; Mian MM; Ali MU; Ahmed R; Cheema AI; Naushad M
    Ecotoxicol Environ Saf; 2020 Mar; 191():110244. PubMed ID: 32004946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.
    Lucchini P; Quilliam RS; Deluca TH; Vamerali T; Jones DL
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3230-40. PubMed ID: 24217969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A preliminary assessment of the potential of using an acacia--biochar system for spent mine site rehabilitation.
    Reverchon F; Yang H; Ho TY; Yan G; Wang J; Xu Z; Chen C; Zhang D
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):2138-44. PubMed ID: 25167814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic residues and biochar to immobilize potentially toxic elements in soil from a gold mine in the Amazon.
    de Souza ES; Dias YN; da Costa HSC; Pinto DA; de Oliveira DM; de Souza Falção NP; Teixeira RA; Fernandes AR
    Ecotoxicol Environ Saf; 2019 Mar; 169():425-434. PubMed ID: 30469028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar aided aromatic grass [Cymbopogon martini (Roxb.) Wats.] vegetation: A sustainable method for stabilization of highly acidic mine waste.
    Jain S; Khare P; Mishra D; Shanker K; Singh P; Singh RP; Das P; Yadav R; Saikia BK; Baruah BP
    J Hazard Mater; 2020 May; 390():121799. PubMed ID: 31818656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.
    Cao Y; Gao Y; Qi Y; Li J
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7589-7599. PubMed ID: 29282668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth.
    Yue Y; Cui L; Lin Q; Li G; Zhao X
    Chemosphere; 2017 Apr; 173():551-556. PubMed ID: 28142113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain).
    Gascó G; Álvarez ML; Paz-Ferreiro J; Méndez A
    Chemosphere; 2019 Sep; 231():562-570. PubMed ID: 31151016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.