These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26172206)

  • 61. Functional Annotation of a Presumed Nitronate Monoxygenase Reveals a New Class of NADH:Quinone Reductases.
    Ball J; Salvi F; Gadda G
    J Biol Chem; 2016 Sep; 291(40):21160-21170. PubMed ID: 27502282
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Distinct oligomerization and NADPH binding modes observed between L. donovani and human quinone oxidoreductases.
    Vishwakarma C; Ansari A; Pratap JV
    Biochem Biophys Res Commun; 2024 Jan; 690():149096. PubMed ID: 37988924
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.
    Mishanina TV; Yadav PK; Ballou DP; Banerjee R
    J Biol Chem; 2015 Oct; 290(41):25072-80. PubMed ID: 26318450
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
    Heikal A; Nakatani Y; Dunn E; Weimar MR; Day CL; Baker EN; Lott JS; Sazanov LA; Cook GM
    Mol Microbiol; 2014 Mar; 91(5):950-64. PubMed ID: 24444429
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new structure-based classification of sulfide:quinone oxidoreductases.
    Marcia M; Ermler U; Peng G; Michel H
    Proteins; 2010 Apr; 78(5):1073-83. PubMed ID: 20077566
    [TBL] [Abstract][Full Text] [Related]  

  • 67. New insights into type II NAD(P)H:quinone oxidoreductases.
    Melo AM; Bandeiras TM; Teixeira M
    Microbiol Mol Biol Rev; 2004 Dec; 68(4):603-16. PubMed ID: 15590775
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NADH oxidation by quinone electron acceptors.
    Cénas NK; Kanapieniené JJ; Kulys JJ
    Biochim Biophys Acta; 1984 Oct; 767(1):108-12. PubMed ID: 6487613
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii.
    Fadeeva MS; Núñez C; Bertsova YV; Espín G; Bogachev AV
    FEMS Microbiol Lett; 2008 Feb; 279(1):116-23. PubMed ID: 18300384
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform.
    Nakatani Y; Shimaki Y; Dutta D; Muench SP; Ireton K; Cook GM; Jeuken LJC
    J Am Chem Soc; 2020 Jan; 142(3):1311-1320. PubMed ID: 31880924
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli.
    Euro L; Belevich G; Bloch DA; Verkhovsky MI; Wikström M; Verkhovskaya M
    Biochim Biophys Acta; 2009 Jan; 1787(1):68-73. PubMed ID: 19061856
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Key role of quinone in the mechanism of respiratory complex I.
    Gutiérrez-Fernández J; Kaszuba K; Minhas GS; Baradaran R; Tambalo M; Gallagher DT; Sazanov LA
    Nat Commun; 2020 Aug; 11(1):4135. PubMed ID: 32811817
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked.
    Yagi T; Matsuno-Yagi A
    Biochemistry; 2003 Mar; 42(8):2266-74. PubMed ID: 12600193
    [No Abstract]   [Full Text] [Related]  

  • 74. A Catalytic Trisulfide in Human Sulfide Quinone Oxidoreductase Catalyzes Coenzyme A Persulfide Synthesis and Inhibits Butyrate Oxidation.
    Landry AP; Moon S; Kim H; Yadav PK; Guha A; Cho US; Banerjee R
    Cell Chem Biol; 2019 Nov; 26(11):1515-1525.e4. PubMed ID: 31591036
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species.
    Yano T; Kassovska-Bratinova S; Teh JS; Winkler J; Sullivan K; Isaacs A; Schechter NM; Rubin H
    J Biol Chem; 2011 Mar; 286(12):10276-87. PubMed ID: 21193400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Free radicals in toxicology: redox cycling and NAD(P)H:quinone oxidoreductase.
    Schulz WA; Eickelmann P; Sies H
    Arch Toxicol Suppl; 1996; 18():217-22. PubMed ID: 8678798
    [No Abstract]   [Full Text] [Related]  

  • 77. EPR studies of the possible binding sites of the cluster N2, semiquinones, and specific inhibitors of the NADH:quinone oxidoreductase (complex I).
    Ohnishi T; Magnitsky S; Toulokhonova L; Yano T; Yagi T; Burbaev DS; Vinogradov AD; Sled VD
    Biochem Soc Trans; 1999 Aug; 27(4):586-91. PubMed ID: 10917647
    [No Abstract]   [Full Text] [Related]  

  • 78. An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum.
    Jensen Jr KA; Ryan ZC; Vanden Wymelenberg A; Cullen D; Hammel KE
    Appl Environ Microbiol; 2002 Jun; 68(6):2699-703. PubMed ID: 12039722
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
    Singh H; Arentson BW; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3389-94. PubMed ID: 24550478
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anoxic cell rupture of Prevotella bryantii by high-pressure homogenization protects the Na
    Schleicher L; Fritz G; Seifert J; Steuber J
    Arch Microbiol; 2020 Jul; 202(5):1263-1266. PubMed ID: 31955240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.