These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26172246)

  • 1. Chemical gardens without silica: the formation of pure metal hydroxide tubes.
    Batista BC; Steinbock O
    Chem Commun (Camb); 2015 Aug; 51(65):12962-5. PubMed ID: 26172246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory growth of silica tubes in chemical gardens.
    Thouvenel-Romans S; Steinbock O
    J Am Chem Soc; 2003 Apr; 125(14):4338-41. PubMed ID: 12670257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillations of a chemical garden.
    Pantaleone J; Toth A; Horvath D; Rother McMahan J; Smith R; Butki D; Braden J; Mathews E; Geri H; Maselko J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046207. PubMed ID: 18517710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional analysis of copper-silica precipitation tubes.
    Pagano JJ; Thouvenel-Romans S; Steinbock O
    Phys Chem Chem Phys; 2007 Jan; 9(1):110-6. PubMed ID: 17164892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubular precipitation structures: materials synthesis under non-equilibrium conditions.
    Makki R; Roszol L; Pagano JJ; Steinbock O
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1969):2848-65. PubMed ID: 22615464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble guidance of tubular growth in reaction-precipitation systems.
    Thouvenel-Romans S; Pagano JJ; Steinbock O
    Phys Chem Chem Phys; 2005 Jul; 7(13):2610-5. PubMed ID: 16189571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion and precipitation processes in iron-based silica gardens.
    Glaab F; Rieder J; García-Ruiz JM; Kunz W; Kellermeier M
    Phys Chem Chem Phys; 2016 Sep; 18(36):24850-8. PubMed ID: 27397509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure oscillations in a chemical garden.
    Pantaleone J; Toth A; Horvath D; RoseFigura L; Morgan W; Maselko J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056221. PubMed ID: 19518550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brinicles as a case of inverse chemical gardens.
    Cartwright JH; Escribano B; González DL; Sainz-Díaz CI; Tuval I
    Langmuir; 2013 Jun; 29(25):7655-60. PubMed ID: 23551166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium synthesis of silica-supported magnetite tubes and mechanical control of their magnetic properties.
    Makki R; Steinbock O
    J Am Chem Soc; 2012 Sep; 134(37):15519-27. PubMed ID: 22894646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-Induced Precipitation in Thin Capillaries Creates Helices, Lamellae, and Tubes.
    Knoll P; Gonzalez AV; McQueen ZC; Steinbock O
    Chemistry; 2019 Nov; 25(61):13885-13889. PubMed ID: 31469925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From hydrodynamic plumes to chemical gardens: the concentration-dependent onset of tube formation.
    Batista BC; Cruz P; Steinbock O
    Langmuir; 2014 Aug; 30(30):9123-9. PubMed ID: 25014675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure Controlled Chemical Gardens.
    Bentley MR; Batista BC; Steinbock O
    J Phys Chem A; 2016 Jun; 120(25):4294-301. PubMed ID: 27266993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of iron-phosphate-silicate chemical garden structures.
    Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I
    Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and Dynamic Behavior of Macroscopic Aluminum-Based Silica Gardens.
    Rieder J; Nützl M; Kunz W; Kellermeier M
    Langmuir; 2022 Aug; 38(34):10392-10399. PubMed ID: 35976253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamics of open precipitation tubes.
    Kaminker V; Maselko J; Pantaleone J
    J Chem Phys; 2014 Jun; 140(24):244901. PubMed ID: 24985672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osmotic contribution to the flow-driven tube formation of copper-phosphate and copper-silicate chemical gardens.
    Rauscher E; Schuszter G; Bohner B; Tóth Á; Horváth D
    Phys Chem Chem Phys; 2018 Feb; 20(8):5766-5770. PubMed ID: 29411806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.
    Cartwright JH; Escribano B; Sainz-Díaz CI; Stodieck LS
    Langmuir; 2011 Apr; 27(7):3294-300. PubMed ID: 21391639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confined direct and reverse chemical gardens: Influence of local flow velocity on precipitation patterns.
    Ziemecka I; Brau F; De Wit A
    Chaos; 2020 Jan; 30(1):013140. PubMed ID: 32013509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability.
    Jones DEH; Walter U
    J Colloid Interface Sci; 1998 Jul; 203(2):286-93. PubMed ID: 9705766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.