BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26172377)

  • 1. Transforming conotoxins into cyclotides: Backbone cyclization of P-superfamily conotoxins.
    Akcan M; Clark RJ; Daly NL; Conibear AC; de Faoite A; Heghinian MD; Sahil T; Adams DJ; Marí F; Craik DJ
    Biopolymers; 2015 Nov; 104(6):682-92. PubMed ID: 26172377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins.
    Clark RJ; Craik DJ
    Biopolymers; 2010; 94(4):414-22. PubMed ID: 20593458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cyclization on stability, structure, and activity of α-conotoxin RgIA at the α9α10 nicotinic acetylcholine receptor and GABA(B) receptor.
    Halai R; Callaghan B; Daly NL; Clark RJ; Adams DJ; Craik DJ
    J Med Chem; 2011 Oct; 54(19):6984-92. PubMed ID: 21888386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of conotoxins to improve stability and activity.
    Craik DJ; Adams DJ
    ACS Chem Biol; 2007 Jul; 2(7):457-68. PubMed ID: 17649970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR and protein structure in drug design: application to cyclotides and conotoxins.
    Daly NL; Rosengren KJ; Henriques ST; Craik DJ
    Eur Biophys J; 2011 Apr; 40(4):359-70. PubMed ID: 21290122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a novel P-superfamily spasmodic conotoxin reveals an inhibitory cystine knot motif.
    Miles LA; Dy CY; Nielsen J; Barnham KJ; Hinds MG; Olivera BM; Bulaj G; Norton RS
    J Biol Chem; 2002 Nov; 277(45):43033-40. PubMed ID: 12193600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclization of conotoxins to improve their biopharmaceutical properties.
    Clark RJ; Akcan M; Kaas Q; Daly NL; Craik DJ
    Toxicon; 2012 Mar; 59(4):446-55. PubMed ID: 21147143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of muO-conotoxins from Conus marmoreus. I nhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons.
    Daly NL; Ekberg JA; Thomas L; Adams DJ; Lewis RJ; Craik DJ
    J Biol Chem; 2004 Jun; 279(24):25774-82. PubMed ID: 15044438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide.
    Kwon S; Bosmans F; Kaas Q; Cheneval O; Conibear AC; Rosengren KJ; Wang CK; Schroeder CI; Craik DJ
    Biotechnol Bioeng; 2016 Oct; 113(10):2202-12. PubMed ID: 27093300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of α-conotoxin AuIB: influences of disulfide connectivity and backbone cyclization.
    Lovelace ES; Gunasekera S; Alvarmo C; Clark RJ; Nevin ST; Grishin AA; Adams DJ; Craik DJ; Daly NL
    Antioxid Redox Signal; 2011 Jan; 14(1):87-95. PubMed ID: 20486767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1.
    Daly NL; Love S; Alewood PF; Craik DJ
    Biochemistry; 1999 Aug; 38(32):10606-14. PubMed ID: 10441158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemistry of cyclotides.
    Craik DJ; Conibear AC
    J Org Chem; 2011 Jun; 76(12):4805-17. PubMed ID: 21526790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII.
    Clark RJ; Fischer H; Dempster L; Daly NL; Rosengren KJ; Nevin ST; Meunier FA; Adams DJ; Craik DJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13767-72. PubMed ID: 16162671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cyclic peptide toxins.
    Clark RJ; Craik DJ
    Methods Enzymol; 2012; 503():57-74. PubMed ID: 22230565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semienzymatic cyclization of disulfide-rich peptides using Sortase A.
    Jia X; Kwon S; Wang CA; Huang YH; Chan LY; Tan CC; Rosengren KJ; Mulvenna JP; Schroeder CI; Craik DJ
    J Biol Chem; 2014 Mar; 289(10):6627-6638. PubMed ID: 24425873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel I-superfamily conopeptides from several clades of Conus species found in the South China Sea.
    Liu Z; Xu N; Hu J; Zhao C; Yu Z; Dai Q
    Peptides; 2009 Oct; 30(10):1782-7. PubMed ID: 19595726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions.
    Chaudhuri D; Aboye T; Camarero JA
    Biochem J; 2019 Jan; 476(1):67-83. PubMed ID: 30635453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins.
    Ireland DC; Colgrave ML; Nguyencong P; Daly NL; Craik DJ
    J Mol Biol; 2006 Apr; 357(5):1522-35. PubMed ID: 16488428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological characterization of a novel small peptide from the venom of Conus californicus that targets voltage-gated neuronal Ca2+ channels.
    Bernaldez J; López O; Licea A; Salceda E; Arellano RO; Vega R; Soto E
    Toxicon; 2011 Jan; 57(1):60-7. PubMed ID: 20920515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.