These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26172517)

  • 1. Suspended monolayer graphene under true uniaxial deformation.
    Polyzos I; Bianchi M; Rizzi L; Koukaras EN; Parthenios J; Papagelis K; Sordan R; Galiotis C
    Nanoscale; 2015 Aug; 7(30):13033-42. PubMed ID: 26172517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene flakes under controlled biaxial deformation.
    Androulidakis C; Koukaras EN; Parthenios J; Kalosakas G; Papagelis K; Galiotis C
    Sci Rep; 2015 Dec; 5():18219. PubMed ID: 26666692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear anisotropic deformation behavior of a graphene monolayer under uniaxial tension.
    Zhou L; Cao G
    Phys Chem Chem Phys; 2016 Jan; 18(3):1657-64. PubMed ID: 26672972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression behavior of single-layer graphenes.
    Frank O; Tsoukleri G; Parthenios J; Papagelis K; Riaz I; Jalil R; Novoselov KS; Galiotis C
    ACS Nano; 2010 Jun; 4(6):3131-8. PubMed ID: 20496881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
    Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX
    ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the reinforcement of polymer-based nanocomposites by graphene.
    Gong L; Young RJ; Kinloch IA; Riaz I; Jalil R; Novoselov KS
    ACS Nano; 2012 Mar; 6(3):2086-95. PubMed ID: 22364317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation of wrinkled graphene.
    Li Z; Kinloch IA; Young RJ; Novoselov KS; Anagnostopoulos G; Parthenios J; Galiotis C; Papagelis K; Lu CY; Britnell L
    ACS Nano; 2015 Apr; 9(4):3917-25. PubMed ID: 25765609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain mapping in a graphene monolayer nanocomposite.
    Young RJ; Gong L; Kinloch IA; Riaz I; Jalil R; Novoselov KS
    ACS Nano; 2011 Apr; 5(4):3079-84. PubMed ID: 21395299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress transfer mechanisms at the submicron level for graphene/polymer systems.
    Anagnostopoulos G; Androulidakis C; Koukaras EN; Tsoukleri G; Polyzos I; Parthenios J; Papagelis K; Galiotis C
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4216-23. PubMed ID: 25644121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrinkling formation in simply-supported graphenes under tension and compression loadings.
    Androulidakis C; Koukaras EN; Pastore Carbone MG; Hadjinicolaou M; Galiotis C
    Nanoscale; 2017 Nov; 9(46):18180-18188. PubMed ID: 29143842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Interlayer Shear Stress in Bilayer Graphene.
    Wang G; Dai Z; Wang Y; Tan P; Liu L; Xu Z; Wei Y; Huang R; Zhang Z
    Phys Rev Lett; 2017 Jul; 119(3):036101. PubMed ID: 28777616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and failure mechanisms of graphene under a central load.
    Wang S; Yang B; Zhang S; Yuan J; Si Y; Chen H
    Chemphyschem; 2014 Sep; 15(13):2749-55. PubMed ID: 25044132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study on the influence of tension and compression deformation on the electrical and phonon properties of monolayer and bilayer graphene.
    Wei L; Liu G; Qu Y; Zhang G
    J Mol Model; 2021 Apr; 27(5):138. PubMed ID: 33903936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate.
    Zhao X; Papageorgiou DG; Zhu L; Ding F; Young RJ
    Nanoscale; 2019 Aug; 11(30):14339-14353. PubMed ID: 31328739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene.
    Spear JC; Custer JP; Batteas JD
    Nanoscale; 2015 Jun; 7(22):10021-9. PubMed ID: 25899217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size Effect of the Interfacial Mechanical Behavior of Graphene on a Stretchable Substrate.
    Xu C; Xue T; Qiu W; Kang Y
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27099-27106. PubMed ID: 27654462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure processes in embedded monolayer graphene under axial compression.
    Androulidakis C; Koukaras EN; Frank O; Tsoukleri G; Sfyris D; Parthenios J; Pugno N; Papagelis K; Novoselov KS; Galiotis C
    Sci Rep; 2014 Jun; 4():5271. PubMed ID: 24920340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors.
    Chen YM; He SM; Huang CH; Huang CC; Shih WP; Chu CL; Kong J; Li J; Su CY
    Nanoscale; 2016 Feb; 8(6):3555-64. PubMed ID: 26805513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.