These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26172597)

  • 1. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.
    Bhomia RK; Inglett PW; Reddy KR
    Sci Total Environ; 2015 Nov; 533():297-306. PubMed ID: 26172597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetland phosphorus dynamics and phosphorus removal potential.
    Skinner M
    Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal changes in soil phosphorus characteristics in a submerged aquatic vegetation-dominated treatment wetland.
    Zamorano MF; Bhomia RK; Chimney MJ; Ivanoff D
    J Environ Manage; 2018 Dec; 228():363-372. PubMed ID: 30241041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term sustainable phosphorus (P) retention in a low-P stormwater wetland for Everglades restoration.
    Dierberg FE; DeBusk TA; Kharbanda MD; Potts JA; Grace KA; Jerauld MJ; Ivanoff DB
    Sci Total Environ; 2021 Feb; 756():143386. PubMed ID: 33280863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands.
    Bhomia RK; Reddy KR
    J Environ Qual; 2018 Mar; 47(2):361-370. PubMed ID: 29634798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peat Accretion and N, P, and Organic C Accumulation in Nutrient-Enriched and Unenriched Everglades Peatlands.
    Craft CB; Richardson CJ
    Ecol Appl; 1993 Aug; 3(3):446-458. PubMed ID: 27759248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial development of surface soil conditions at two created riverine marshes.
    Anderson CJ; Mitsch WJ; Nairn RW
    J Environ Qual; 2005; 34(6):2072-81. PubMed ID: 16221827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area.
    Dierberg FE; DeBusk TA; Henry JL; Jackson SD; Galloway S; Gabriel MC
    J Environ Qual; 2012; 41(5):1661-73. PubMed ID: 23099958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of river sediment on phosphorus chemistry of similarly aged natural and created wetlands in the Atchafalaya Delta, Louisiana, USA.
    Poach ME; Faulkner SP
    J Environ Qual; 2007; 36(4):1217-23. PubMed ID: 17596631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of non-point source pollution by a natural wetland.
    Kao CM; Wu MJ
    Water Sci Technol; 2001; 43(5):169-74. PubMed ID: 11379129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA).
    Coveney MF; Lowe EF; Battoe LE
    Water Sci Technol; 2001; 44(11-12):131-6. PubMed ID: 11804084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil phosphorus forms and storage in stormwater treatment areas of the Everglades: Influence of vegetation and nutrient loading.
    Reddy KR; Vardanyan L; Hu J; Villapando O; Bhomia RK; Smith T; Harris WG; Newman S
    Sci Total Environ; 2020 Jul; 725():138442. PubMed ID: 32464752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding stoichiometric mechanisms of nutrient retention in wetland macrophytes: stoichiometric homeostasis along a nutrient gradient in a subtropical wetland.
    Julian P; Gerber S; Bhomia RK; King J; Osborne TZ; Wright AL
    Oecologia; 2020 Aug; 193(4):969-980. PubMed ID: 32725299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.
    Lewis DB; Feit SJ
    Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.
    McCarty G; Pachepsky Y; Ritchie J
    J Environ Qual; 2009; 38(2):804-13. PubMed ID: 19244502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of indices to predict phosphorus release from wetland soils.
    Mukherjee A; Nair VD; Clark MW; Reddy KR
    J Environ Qual; 2009; 38(3):878-86. PubMed ID: 19329676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox.
    Avila C; Reyes C; Bayona JM; García J
    Water Res; 2013 Jan; 47(1):315-25. PubMed ID: 23123085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.