These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26172691)

  • 1. Performance of quantum Otto refrigerators with squeezing.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator.
    Yuan Y; Wang R; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052151. PubMed ID: 25493783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators.
    Wang Y; Li M; Tu ZC; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011127. PubMed ID: 23005388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reservoir squeezing on quantum systems and work extraction.
    Huang XL; Wang T; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051105. PubMed ID: 23214736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale heat engine beyond the Carnot limit.
    Roßnagel J; Abah O; Schmidt-Kaler F; Singer K; Lutz E
    Phys Rev Lett; 2014 Jan; 112(3):030602. PubMed ID: 24484127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum speed limit constraints on a nanoscale autonomous refrigerator.
    Mukhopadhyay C; Misra A; Bhattacharya S; Pati AK
    Phys Rev E; 2018 Jun; 97(6-1):062116. PubMed ID: 30011569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of heat-to-work conversion in quantum machines.
    Ghosh A; Latune CL; Davidovich L; Kurizki G
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12156-12161. PubMed ID: 29087326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current fluctuations in quantum absorption refrigerators.
    Segal D
    Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance bound for quantum absorption refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.