These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26172696)

  • 1. Optimization of finite-size errors in finite-temperature calculations of unordered phases.
    Iyer D; Srednicki M; Rigol M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062142. PubMed ID: 26172696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions.
    Wang Z; Assaad FF; Parisen Toldin F
    Phys Rev E; 2017 Oct; 96(4-1):042131. PubMed ID: 29347588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of canonical averages from the grand canonical ensemble.
    Kosov DS; Gelin MF; Vdovin AI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021120. PubMed ID: 18352000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonanalyticities of thermodynamic functions in finite noninteracting Bose gases within an exact microcanonical ensemble.
    Tang HY; Ma YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061135. PubMed ID: 21797330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles.
    Hirata S
    J Chem Phys; 2021 Sep; 155(9):094106. PubMed ID: 34496596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Optimization of finite-size errors in finite-temperature calculations of unordered phases [Phys. Rev. E 91, 062142 (2015)].
    Iyer D; Srednicki M; Rigol M
    Phys Rev E; 2017 Sep; 96(3-2):039903. PubMed ID: 29347010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical linked cluster expansions for quantum quenches in one-dimensional lattices.
    Mallayya K; Rigol M
    Phys Rev E; 2017 Mar; 95(3-1):033302. PubMed ID: 28415243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical density functional theory in the canonical ensemble.
    Lutsko JF
    Phys Rev E; 2022 Mar; 105(3-1):034120. PubMed ID: 35428042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational phase transitions in a one-dimensional spherical system.
    Youngkins VP; Miller BN
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4583-96. PubMed ID: 11088997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat.
    Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems.
    Uline MJ; Siderius DW; Corti DS
    J Chem Phys; 2008 Mar; 128(12):124301. PubMed ID: 18376913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable recursive auxiliary field quantum Monte Carlo algorithm in the canonical ensemble: Applications to thermometry and the Hubbard model.
    Shen T; Barghathi H; Yu J; Del Maestro A; Rubenstein BM
    Phys Rev E; 2023 May; 107(5-2):055302. PubMed ID: 37329093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 Jun; 122(23):234108. PubMed ID: 16008431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meaning of temperature in different thermostatistical ensembles.
    Hänggi P; Hilbert S; Dunkel J
    Philos Trans A Math Phys Eng Sci; 2016 Mar; 374(2064):20150039. PubMed ID: 26903095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble Inequivalence in Long-Range Quantum Systems.
    Defenu N; Mukamel D; Ruffo S
    Phys Rev Lett; 2024 Aug; 133(5):050403. PubMed ID: 39159084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial equivalence of statistical ensembles in a simple spin model with discontinuous phase transitions.
    Fronczak A; Fronczak P; Siudem G
    Phys Rev E; 2020 Feb; 101(2-1):022111. PubMed ID: 32168570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy and temperature in finite isolated quantum systems.
    Burke PC; Haque M
    Phys Rev E; 2023 Mar; 107(3-1):034125. PubMed ID: 37072955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical-point finite-size scaling in the microcanonical ensemble.
    Bruce AD; Wilding NB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3748-60. PubMed ID: 11970208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation.
    Gradenigo G; Iubini S; Livi R; Majumdar SN
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):29. PubMed ID: 33710395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical linked-cluster approach to quantum lattice models.
    Rigol M; Bryant T; Singh RR
    Phys Rev Lett; 2006 Nov; 97(18):187202. PubMed ID: 17155572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.