These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26172737)

  • 1. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements.
    Yu W; Wood KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization dynamics in diverse ensemble of noisy phase oscillators with asynchronous phase updates.
    Belan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062910. PubMed ID: 26764777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model.
    Assis VR; Copelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061105. PubMed ID: 20365116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041132. PubMed ID: 17994961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple models for quorum sensing: nonlinear dynamical analysis.
    Chiang WY; Li YX; Lai PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041921. PubMed ID: 22181189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion.
    Banerjee T; Biswas D
    Chaos; 2013 Dec; 23(4):043101. PubMed ID: 24387540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predator-prey model for the self-organization of stochastic oscillators in dual populations.
    Moradi S; Anderson J; Gürcan OD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062930. PubMed ID: 26764797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of micromechanical oscillators using light.
    Zhang M; Wiederhecker GS; Manipatruni S; Barnard A; McEuen P; Lipson M
    Phys Rev Lett; 2012 Dec; 109(23):233906. PubMed ID: 23368207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization in populations of globally coupled oscillators with inertial effects.
    Acebron JA; Bonilla LL; Spigler R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of oscillators via active media.
    Orr D; Ermentrout B
    Phys Rev E; 2019 May; 99(5-1):052218. PubMed ID: 31212450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise.
    Kostin VA; Munyaev VO; Osipov GV; Smirnov LA
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewal Approach to the Analysis of the Asynchronous State for Coupled Noisy Oscillators.
    Farkhooi F; van Vreeswijk C
    Phys Rev Lett; 2015 Jul; 115(3):038103. PubMed ID: 26230829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of disorder on synchronization of discrete phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041107. PubMed ID: 17500865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
    Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization and oscillator death in oscillatory media with stirring.
    Neufeld Z; Kiss IZ; Zhou C; Kurths J
    Phys Rev Lett; 2003 Aug; 91(8):084101. PubMed ID: 14525240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization transitions in phase oscillator populations with partial adaptive coupling.
    Chen Z; Zheng Z; Xu C
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38829794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.