These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26172773)
1. Determining the sub-Lyapunov exponent of delay systems from time series. Jüngling T; Soriano MC; Fischer I Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062908. PubMed ID: 26172773 [TBL] [Abstract][Full Text] [Related]
2. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533 [TBL] [Abstract][Full Text] [Related]
3. The transition between strong and weak chaos in delay systems: Stochastic modeling approach. Jüngling T; D'Huys O; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062918. PubMed ID: 26172783 [TBL] [Abstract][Full Text] [Related]
4. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
5. Local conditional Lyapunov exponent characterization of consistency of dynamical response of the driven Lorenz system. Uchida A; Yoshimura K; Davis P; Yoshimori S; Roy R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036203. PubMed ID: 18851117 [TBL] [Abstract][Full Text] [Related]
6. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory. Tewatia DK; Tolakanahalli RP; Paliwal BR; Tomé WA Phys Med Biol; 2011 Apr; 56(7):2161-81. PubMed ID: 21389355 [TBL] [Abstract][Full Text] [Related]
7. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities. Akimoto T; Nakagawa M; Shinkai S; Aizawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700 [TBL] [Abstract][Full Text] [Related]
8. From dynamical systems with time-varying delay to circle maps and Koopman operators. Müller D; Otto A; Radons G Phys Rev E; 2017 Jun; 95(6-1):062214. PubMed ID: 28709184 [TBL] [Abstract][Full Text] [Related]
9. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Gao JB; Hu J; Tung WW; Cao YH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136 [TBL] [Abstract][Full Text] [Related]
10. Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems. Kanno K; Uchida A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032918. PubMed ID: 24730924 [TBL] [Abstract][Full Text] [Related]
11. Consistency properties of a chaotic semiconductor laser driven by optical feedback. Oliver N; Jüngling T; Fischer I Phys Rev Lett; 2015 Mar; 114(12):123902. PubMed ID: 25860746 [TBL] [Abstract][Full Text] [Related]
12. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System. Rozenbaum EB; Ganeshan S; Galitski V Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154 [TBL] [Abstract][Full Text] [Related]
13. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks. Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685 [TBL] [Abstract][Full Text] [Related]
14. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows. Finn J; Apte SV Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982 [TBL] [Abstract][Full Text] [Related]
15. Lyapunov exponent diagrams of a 4-dimensional Chua system. Stegemann C; Albuquerque HA; Rubinger RM; Rech PC Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640 [TBL] [Abstract][Full Text] [Related]
17. Using recurrences to characterize the hyperchaos-chaos transition. Souza EG; Viana RL; Lopes SR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066206. PubMed ID: 19256924 [TBL] [Abstract][Full Text] [Related]
18. Lyapunov exponent of ion motion in microplasmas. Gaspard P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056209. PubMed ID: 14682873 [TBL] [Abstract][Full Text] [Related]
19. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
20. A heuristic method for identifying chaos from frequency content. Wiebe R; Virgin LN Chaos; 2012 Mar; 22(1):013136. PubMed ID: 22463012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]