These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26172810)

  • 1. Ion-ion dynamic structure factor of warm dense mixtures.
    Gill NM; Heinonen RA; Starrett CE; Saumon D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063109. PubMed ID: 26172810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integral equation model for warm and hot dense mixtures.
    Starrett CE; Saumon D; Daligault J; Hamel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033110. PubMed ID: 25314550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum.
    Harbour L; Förster GD; Dharma-Wardana MWC; Lewis LJ
    Phys Rev E; 2018 Apr; 97(4-1):043210. PubMed ID: 29758670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equation of state of dense plasmas with pseudoatom molecular dynamics.
    Starrett CE; Saumon D
    Phys Rev E; 2016 Jun; 93(6):063206. PubMed ID: 27415376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio simulations for the ion-ion structure factor of warm dense aluminum.
    Rüter HR; Redmer R
    Phys Rev Lett; 2014 Apr; 112(14):145007. PubMed ID: 24765982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudoatom molecular dynamics.
    Starrett CE; Daligault J; Saumon D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013104. PubMed ID: 25679720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of the elastic x-ray scattering feature for warm dense aluminum.
    Starrett CE; Saumon D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033101. PubMed ID: 26465569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum.
    White TG; Richardson S; Crowley BJ; Pattison LK; Harris JW; Gregori G
    Phys Rev Lett; 2013 Oct; 111(17):175002. PubMed ID: 24206498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and ionic structures of warm and hot dense matter.
    Starrett CE; Saumon D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013104. PubMed ID: 23410443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory.
    Sjostrom T; Daligault J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063304. PubMed ID: 26764850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si.
    Dharma-wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036407. PubMed ID: 23031034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of x-ray scattering spectra for warm dense matter.
    Souza AN; Perkins DJ; Starrett CE; Saumon D; Hansen SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023108. PubMed ID: 25353587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.
    Harbour L; Dharma-Wardana MW; Klug DD; Lewis LJ
    Phys Rev E; 2016 Nov; 94(5-1):053211. PubMed ID: 27967139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples.
    Hou Y; Yuan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016402. PubMed ID: 19257143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static and dynamic conductivity of warm dense matter within a density-functional approach: application to aluminum and gold.
    Dharma-wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036401. PubMed ID: 16605662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pair-distribution functions of two-temperature two-mass systems: comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen.
    Dharma-wardana MW; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026401. PubMed ID: 18352127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comment on "Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime".
    Witte BBL; Röpke G; Neumayer P; French M; Sperling P; Recoules V; Glenzer SH; Redmer R
    Phys Rev E; 2019 Apr; 99(4-2):047201. PubMed ID: 31108609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yukawa-Friedel-tail pair potentials for warm dense matter applications.
    Dharma-Wardana MWC; Stanek LJ; Murillo MS
    Phys Rev E; 2022 Dec; 106(6-2):065208. PubMed ID: 36671176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab Initio Studies on the Stopping Power of Warm Dense Matter with Time-Dependent Orbital-Free Density Functional Theory.
    Ding YH; White AJ; Hu SX; Certik O; Collins LA
    Phys Rev Lett; 2018 Oct; 121(14):145001. PubMed ID: 30339443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.