These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26172812)

  • 1. Nonparaxial rogue waves in optical Kerr media.
    Temgoua DD; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063201. PubMed ID: 26172812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.
    Temgoua DDE; Tchokonte MBT; Kofane TC
    Phys Rev E; 2018 Apr; 97(4-1):042205. PubMed ID: 29758712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable optical rogue waves via nonlinearity management.
    Yang Z; Zhong WP; Belić M; Zhang Y
    Opt Express; 2018 Mar; 26(6):7587-7597. PubMed ID: 29609312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
    Loomba S; Kaur H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062903. PubMed ID: 24483527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 8. Three-dimensional rogue waves in nonstationary parabolic potentials.
    Yan Z; Konotop VV; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036610. PubMed ID: 21230206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients.
    Zhong WP; Belić MR; Huang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):065201. PubMed ID: 23848816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable parabolic-cylinder optical rogue wave.
    Zhong WP; Chen L; Belić M; Petrović N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043201. PubMed ID: 25375612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers.
    Yomba E; Zakeri GA
    Chaos; 2016 Aug; 26(8):083115. PubMed ID: 27586611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipole and quadrupole nonparaxial solitary waves.
    Saha N; Roy B; Khare A
    Chaos; 2022 Sep; 32(9):093106. PubMed ID: 36182394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubic-quintic nonlinear Helmholtz equation: Modulational instability, chirped elliptic and solitary waves.
    Tamilselvan K; Kanna T; Govindarajan A
    Chaos; 2019 Jun; 29(6):063121. PubMed ID: 31266321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network.
    Kengne E; Liu W
    Phys Rev E; 2020 Jul; 102(1-1):012203. PubMed ID: 32795018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.