BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26172832)

  • 21. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains.
    Heidenreich E; Holzmann V; Eisler H
    DNA Repair (Amst); 2004 Apr; 3(4):395-402. PubMed ID: 15010315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis.
    Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF
    Mol Microbiol; 2005 Aug; 57(3):678-90. PubMed ID: 16045613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases.
    Zhao L; Washington MT
    Genes (Basel); 2017 Jan; 8(1):. PubMed ID: 28075396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a strand-related bias in the PCNA-mediated bypass of spontaneous lesions by yeast Poleta.
    Abdulovic AL; Minesinger BK; Jinks-Robertson S
    DNA Repair (Amst); 2007 Sep; 6(9):1307-18. PubMed ID: 17442629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concurrent nucleotide substitution mutations in the human genome are characterized by a significantly decreased transition/transversion ratio.
    Zhu W; Cooper DN; Zhao Q; Wang Y; Liu R; Li Q; Férec C; Wang Y; Chen JM
    Hum Mutat; 2015 Mar; 36(3):333-41. PubMed ID: 25546635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Keeping mammalian mutation load in check: regulation of the activity of error-prone DNA polymerases by p53 and p21.
    Livneh Z
    Cell Cycle; 2006 Sep; 5(17):1918-22. PubMed ID: 16969082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation.
    Diaz M; Lawrence C
    Trends Immunol; 2005 Apr; 26(4):215-20. PubMed ID: 15797512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host translesion polymerases are required for viral genome integrity.
    Zeltzer S; Longmire P; Svoboda M; Bosco G; Goodrum F
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2203203119. PubMed ID: 35947614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translesion DNA synthesis: polymerase response to altered nucleotides.
    Strauss BS
    Cancer Surv; 1985; 4(3):493-516. PubMed ID: 2825983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
    Venkadakrishnan J; Lahane G; Dhar A; Xiao W; Bhat KM; Pandita TK; Bhat A
    Mol Cell Biol; 2023; 43(8):401-425. PubMed ID: 37439479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA damage-induced mutagenesis : a novel target for cancer prevention.
    Wang Z
    Mol Interv; 2001 Dec; 1(5):269-81. PubMed ID: 14993366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis?
    Fischhaber PL; Friedberg EC
    DNA Repair (Amst); 2005 Feb; 4(2):279-83. PubMed ID: 15590336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites.
    Baptiste BA; Jacob KD; Eckert KA
    DNA Repair (Amst); 2015 May; 29():91-100. PubMed ID: 25758780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of the spectrum and genetic dependence of collateral mutations induced by translesion DNA synthesis.
    Póti Á; Szikriszt B; Gervai JZ; Chen D; Szüts D
    PLoS Genet; 2022 Feb; 18(2):e1010051. PubMed ID: 35130276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The biological effect of Y-family DNA polymerases on the translesion synthesis].
    Gong Y; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):213-6. PubMed ID: 23488167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translesion synthesis DNA polymerases η, ι, and ν promote mutagenic replication through the anticancer nucleoside cytarabine.
    Yoon JH; Roy Choudhury J; Prakash L; Prakash S
    J Biol Chem; 2019 Dec; 294(50):19048-19054. PubMed ID: 31685662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism.
    Yang W; Gao Y
    Annu Rev Biochem; 2018 Jun; 87():239-261. PubMed ID: 29494238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freedom to err: The expanding cellular functions of translesion DNA polymerases.
    Paniagua I; Jacobs JJL
    Mol Cell; 2023 Oct; 83(20):3608-3621. PubMed ID: 37625405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.