These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 26172911)
1. Allosteric control of transcription in GntR family of transcription regulators: A structural overview. Jain D IUBMB Life; 2015 Jul; 67(7):556-63. PubMed ID: 26172911 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of GntR/HutC family signaling domain. Gorelik M; Lunin VV; Skarina T; Savchenko A Protein Sci; 2006 Jun; 15(6):1506-11. PubMed ID: 16672238 [TBL] [Abstract][Full Text] [Related]
3. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279 [TBL] [Abstract][Full Text] [Related]
4. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. Rigali S; Derouaux A; Giannotta F; Dusart J J Biol Chem; 2002 Apr; 277(15):12507-15. PubMed ID: 11756427 [TBL] [Abstract][Full Text] [Related]
5. Crystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors. Fillenberg SB; Friess MD; Körner S; Böckmann RA; Muller YA PLoS One; 2016; 11(6):e0157691. PubMed ID: 27337024 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Park SC; Kwak YM; Song WS; Hong M; Yoon SI Nucleic Acids Res; 2017 Dec; 45(22):13080-13093. PubMed ID: 29136175 [TBL] [Abstract][Full Text] [Related]
7. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. Molina-Henares AJ; Krell T; Eugenia Guazzaroni M; Segura A; Ramos JL FEMS Microbiol Rev; 2006 Mar; 30(2):157-86. PubMed ID: 16472303 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Kwon HJ; Bennik MH; Demple B; Ellenberger T Nat Struct Biol; 2000 May; 7(5):424-30. PubMed ID: 10802742 [TBL] [Abstract][Full Text] [Related]
9. Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. Hoskisson PA; Rigali S Adv Appl Microbiol; 2009; 69():1-22. PubMed ID: 19729089 [TBL] [Abstract][Full Text] [Related]
10. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation. Lord DM; Uzgoren Baran A; Soo VW; Wood TK; Peti W; Page R Biochemistry; 2014 Nov; 53(46):7223-31. PubMed ID: 25376905 [TBL] [Abstract][Full Text] [Related]
11. HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. Aravind L; Anantharaman V FEMS Microbiol Lett; 2003 May; 222(1):17-23. PubMed ID: 12757941 [TBL] [Abstract][Full Text] [Related]
12. Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Resch M; Schiltz E; Titgemeyer F; Muller YA Nucleic Acids Res; 2010 Apr; 38(7):2485-97. PubMed ID: 20047956 [TBL] [Abstract][Full Text] [Related]
13. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Zaim J; Kierzek AM Nucleic Acids Res; 2003 Mar; 31(5):1444-54. PubMed ID: 12595552 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Schumacher MA; Allen GS; Diel M; Seidel G; Hillen W; Brennan RG Cell; 2004 Sep; 118(6):731-41. PubMed ID: 15369672 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828 [TBL] [Abstract][Full Text] [Related]
16. The structures of transcription factor CGL2947 from Corynebacterium glutamicum in two crystal forms: a novel homodimer assembling and the implication for effector-binding mode. Gao YG; Yao M; Itou H; Zhou Y; Tanaka I Protein Sci; 2007 Sep; 16(9):1878-86. PubMed ID: 17766384 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. van Aalten DM; DiRusso CC; Knudsen J; Wierenga RK EMBO J; 2000 Oct; 19(19):5167-77. PubMed ID: 11013219 [TBL] [Abstract][Full Text] [Related]
18. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains. Zheng M; Cooper DR; Grossoehme NE; Yu M; Hung LW; Cieslik M; Derewenda U; Lesley SA; Wilson IA; Giedroc DP; Derewenda ZS Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):356-65. PubMed ID: 19307717 [TBL] [Abstract][Full Text] [Related]
19. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery. Streaker ED; Beckett D J Mol Biol; 1999 Sep; 292(3):619-32. PubMed ID: 10497026 [TBL] [Abstract][Full Text] [Related]
20. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Xu Y; Beckett D Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]