These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26172945)

  • 21. Origin of Interface Limitation in Zn(O,S)/CuInS
    Sood M; Bombsch J; Lomuscio A; Shukla S; Hartmann C; Frisch J; Bremsteller W; Ueda S; Wilks RG; Bär M; Siebentritt S
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9676-9684. PubMed ID: 35134299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of CuInS2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties.
    Lee SM; Ikeda S; Yagi T; Harada T; Ennaoui A; Matsumura M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6662-9. PubMed ID: 21384000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Sulfur Vacancy-Bearing In
    Liao A; Liu Z; Wei Y; Xie Q; Kong T; Zeng M; Wang W; Yang C; Zhang L; Xu Y; Zhou Y; Zou Z
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.
    Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial charge separated two-dimensional/two-dimensional Cu-In
    Yang L; Gao T; Yuan S; Dong Y; Chen Y; Wang X; Chen C; Tang L; Ohno T
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1503-1511. PubMed ID: 37659318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst.
    Wang M; Chang YS; Tsao CW; Fang MJ; Hsu YJ; Choy KL
    Chem Commun (Camb); 2019 Feb; 55(17):2465-2468. PubMed ID: 30734787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications.
    Guijarro N; Prévot MS; Sivula K
    J Phys Chem Lett; 2014 Nov; 5(21):3902-8. PubMed ID: 26278767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CuInS
    Chae SY; Kim Y; Park ED; Im SH; Joo OS
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58447-58457. PubMed ID: 34450006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A self-powered photoanode-supported photoelectrochemical immunosensor for CYFRA 21-1 detection based on In
    Wu T; Feng J; Zhang S; Liu L; Ren X; Fan D; Kuang X; Sun X; Wei Q; Ju H
    Biosens Bioelectron; 2020 Dec; 169():112580. PubMed ID: 32911316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS.
    Gansukh M; Li Z; Rodriguez ME; Engberg S; Martinho FMA; Mariño SL; Stamate E; Schou J; Hansen O; Canulescu S
    Sci Rep; 2020 Oct; 10(1):18388. PubMed ID: 33110088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring Transformations of Catalytic Active States in Photocathodes Based on MoS
    Chae SY; Yoon N; Joo OS; Park ED
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215227. PubMed ID: 36542061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p-CuInS
    Chae SY; Lee M; Je Kim M; Cho JH; Kim B; Joo OS
    ChemSusChem; 2020 Dec; 13(24):6651-6659. PubMed ID: 33119209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A facile in situ synthesis route for CuInS(2) quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric performance.
    Wang YQ; Rui YC; Zhang QH; Li YG; Wang HZ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11858-64. PubMed ID: 24160726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell.
    Pareek A; Paik P; Borse PH
    Langmuir; 2014 Dec; 30(51):15540-9. PubMed ID: 25458461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.
    Ehsan MA; Peiris TA; Wijayantha KG; Olmstead MM; Arifin Z; Mazhar M; Lo KM; McKee V
    Dalton Trans; 2013 Aug; 42(30):10919-28. PubMed ID: 23787951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CuInS
    Li Y; Adili G; Liang G; Ma Y; Liu J
    Anal Chem; 2024 Jul; 96(29):11985-11996. PubMed ID: 38989829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient Self-Doped CuBi
    Wang F; Septina W; Chemseddine A; Abdi FF; Friedrich D; Bogdanoff P; van de Krol R; Tilley SD; Berglund SP
    J Am Chem Soc; 2017 Oct; 139(42):15094-15103. PubMed ID: 28968492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on new CuInS2/carbon composite counter electrodes for CdS/CdSe cosensitized solar cells.
    Zhang X; Huang X; Yang Y; Wang S; Gong Y; Luo Y; Li D; Meng Q
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5954-60. PubMed ID: 23734873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Charge Separation and Hydrogen Evolution on Particulate La
    Liu J; Hisatomi T; Murthy DH; Zhong M; Nakabayashi M; Higashi T; Suzuki Y; Matsuzaki H; Seki K; Furube A; Shibata N; Katayama M; Minegishi T; Domen K
    J Phys Chem Lett; 2017 Jan; 8(2):375-379. PubMed ID: 28033010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.