These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26173412)

  • 1. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.
    Jacak J; Schaller S; Borgmann D; Winkler SM
    Microsc Microanal; 2015 Aug; 21(4):826-36. PubMed ID: 26173412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue.
    Sams M; Silye R; Göhring J; Muresan L; Schilcher K; Jacak J
    J Biomed Opt; 2014 Jan; 19(1):011021. PubMed ID: 24297043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct stochastic optical reconstruction microscopy (dSTORM).
    Endesfelder U; Heilemann M
    Methods Mol Biol; 2015; 1251():263-76. PubMed ID: 25391804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System.
    Poon CC; Ebacher V; Liu K; Yong VW; Kelly JJP
    J Vis Exp; 2018 May; (135):. PubMed ID: 29781988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal-glial interactions and psychoactive drug mechanism of action.
    Whitaker-Azmitia PM; Clarke C; Azmitia EC
    Synapse; 1993 Jul; 14(3):201-5. PubMed ID: 8211706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.
    Tam J; Merino D
    J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time computation of subdiffraction-resolution fluorescence images.
    Wolter S; Schüttpelz M; Tscherepanow M; VAN DE Linde S; Heilemann M; Sauer M
    J Microsc; 2010 Jan; 237(1):12-22. PubMed ID: 20055915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive correction technique for 3D reconstruction of fluorescence microscopy images.
    Guan YQ; Cai YY; Zhang X; Lee YT; Opas M
    Microsc Res Tech; 2008 Feb; 71(2):146-57. PubMed ID: 17992693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic development of the Drosophila brain. II. Pattern of glial cells.
    Hartenstein V; Nassif C; Lekven A
    J Comp Neurol; 1998 Dec; 402(1):32-47. PubMed ID: 9831044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-automated image processing system for micro- to macro-scale analysis of immunohistopathology: application to ischemic brain tissue.
    Wu C; Zhao W; Lin B; Ginsberg MD
    Comput Methods Programs Biomed; 2005 Apr; 78(1):75-86. PubMed ID: 15780892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection.
    Matula P; Kumar A; Wörz I; Erfle H; Bartenschlager R; Eils R; Rohr K
    Cytometry A; 2009 Apr; 75(4):309-18. PubMed ID: 19006066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Cell-ID 1.4 with R for microscope-based cytometry.
    Bush A; Chernomoretz A; Yu R; Gordon A; Colman-Lerner A
    Curr Protoc Mol Biol; 2012 Oct; Chapter 14():Unit 14.18. PubMed ID: 23026908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing cells in three dimensions using confocal microscopy, image reconstruction and isosurface rendering: application to glial cells in mouse central nervous system.
    Morgan F; Barbarese E; Carson JH
    Scanning Microsc; 1992 Jun; 6(2):345-56; discussion 356-7. PubMed ID: 1281337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing.
    Lefman J; Scott K; Stranick S
    Microsc Microanal; 2011 Apr; 17(2):191-6. PubMed ID: 21385522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical review: types of imaging-direct STORM.
    Jensen E; Crossman DJ
    Anat Rec (Hoboken); 2014 Dec; 297(12):2227-31. PubMed ID: 24995970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data.
    Levet F; Hosy E; Kechkar A; Butler C; Beghin A; Choquet D; Sibarita JB
    Nat Methods; 2015 Nov; 12(11):1065-71. PubMed ID: 26344046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of localization microscopy data.
    Baddeley D; Cannell MB; Soeller C
    Microsc Microanal; 2010 Feb; 16(1):64-72. PubMed ID: 20082730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining multiset resolution and segmentation for hyperspectral image analysis of biological tissues.
    Piqueras S; Krafft C; Beleites C; Egodage K; von Eggeling F; Guntinas-Lichius O; Popp J; Tauler R; de Juan A
    Anal Chim Acta; 2015 Jun; 881():24-36. PubMed ID: 26041517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy.
    Andronov L; Orlov I; Lutz Y; Vonesch JL; Klaholz BP
    Sci Rep; 2016 Apr; 6():24084. PubMed ID: 27068792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.