BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26173487)

  • 1. Electronic structures of bare and terephthalic acid adsorbed TiO2(110)-(1 × 2) reconstructed surfaces: origin and reactivity of the band gap states.
    Zhang W; Liu L; Wan L; Liu L; Cao L; Xu F; Zhao J; Wu Z
    Phys Chem Chem Phys; 2015 Aug; 17(31):20144-53. PubMed ID: 26173487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption studies of p-aminobenzoic acid on the anatase TiO₂(101) surface.
    Thomas AG; Jackman MJ; Wagstaffe M; Radtke H; Syres K; Adell J; Lévy A; Martsinovich N
    Langmuir; 2014 Oct; 30(41):12306-14. PubMed ID: 25254628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis.
    Du Y; Petrik NG; Deskins NA; Wang Z; Henderson MA; Kimmel GA; Lyubinetsky I
    Phys Chem Chem Phys; 2012 Mar; 14(9):3066-74. PubMed ID: 22108618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Formation Mechanism of Black TiO2 Nanoparticles.
    Tian M; Mahjouri-Samani M; Eres G; Sachan R; Yoon M; Chisholm MF; Wang K; Puretzky AA; Rouleau CM; Geohegan DB; Duscher G
    ACS Nano; 2015 Oct; 9(10):10482-8. PubMed ID: 26393371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adsorption of α-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: a density functional theory study.
    Ma JG; Zhang CR; Gong JJ; Yang B; Zhang HM; Wang W; Wu YZ; Chen YH; Chen HS
    J Chem Phys; 2014 Dec; 141(23):234705. PubMed ID: 25527955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the interaction between 2,2'-bithiophene-5-carboxylic acid and TiO
    Dervaux J; Cormier PA; Struzzi C; Scardamaglia M; Bittencourt C; Petaccia L; Cornil D; Lasser L; Beljonne D; Cornil J; Lazzaroni R; Snyders R
    J Chem Phys; 2017 Dec; 147(24):244704. PubMed ID: 29289152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of rutile TiO2 (110)-(1 x 2): formation of Ti2O3 quasi-1D metallic chains.
    Blanco-Rey M; Abad J; Rogero C; Mendez J; Lopez MF; Martin-Gago JA; de Andres PL
    Phys Rev Lett; 2006 Feb; 96(5):055502. PubMed ID: 16486946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems.
    Beltrán A; Andrés J; Sambrano JR; Longo E
    J Phys Chem A; 2008 Sep; 112(38):8943-52. PubMed ID: 18680263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110).
    Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M
    J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociative adsorption of NO on TiO2 (110)-(1 x 2) surface: Ti2O3 rows as actives sites for the adsorption.
    Abad J; Böhme O; Román E
    Langmuir; 2007 Jul; 23(14):7583-6. PubMed ID: 17523686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hydroxyl groups in the NH(x) (x = 1-3) adsorption on the TiO2 anatase (101) surface determined by a first-principles study.
    Chang JG; Chen HT; Ju SP; Chen HL; Hwang CC
    Langmuir; 2010 Apr; 26(7):4813-21. PubMed ID: 20131922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation on structural and electronic properties of organic dye C258 on TiO₂(101) surface in dye-sensitized solar cells.
    Sun PP; Li QS; Yang LN; Sun ZZ; Li ZS
    Phys Chem Chem Phys; 2014 Oct; 16(39):21827-37. PubMed ID: 25201320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study.
    Wang Q; Oganov AR; Feya OD; Zhu Q; Ma D
    Phys Chem Chem Phys; 2016 Jul; 18(29):19549-56. PubMed ID: 27086932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiO2-based gas sensor: a possible application to SO2.
    Nisar J; Topalian Z; De Sarkar A; Österlund L; Ahuja R
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8516-22. PubMed ID: 23915321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate and band bending effects on monolayer FeSe on SrTiO
    Xu M; Song X; Wang H
    Phys Chem Chem Phys; 2017 Mar; 19(11):7964-7970. PubMed ID: 28262868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalation of tetraphenylporphyrin with nickel on a TiO2(110)-1 × 2 surface.
    Wang C; Fan Q; Han Y; Martínez JI; Martín-Gago JA; Wang W; Ju H; Gottfried JM; Zhu J
    Nanoscale; 2016 Jan; 8(2):1123-1132. PubMed ID: 26667953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.
    Bandura AV; Kuruch DD; Evarestov RA
    Chemphyschem; 2015 Jul; 16(10):2192-8. PubMed ID: 26010751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.
    Navas J; Sánchez-Coronilla A; Aguilar T; Hernández NC; de los Santos DM; Sánchez-Márquez J; Zorrilla D; Fernández-Lorenzo C; Alcántara R; Martín-Calleja J
    Phys Chem Chem Phys; 2014 Feb; 16(8):3835-45. PubMed ID: 24434807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.