These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26173510)

  • 1. Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase.
    Hallen A; Cooper AJ; Smith JR; Jamie JF; Karuso P
    Amino Acids; 2015 Nov; 47(11):2457-61. PubMed ID: 26173510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of mouse mu-crystallin complexed with NADPH and the T3 thyroid hormone.
    Borel F; Hachi I; Palencia A; Gaillard MC; Ferrer JL
    FEBS J; 2014 Mar; 281(6):1598-612. PubMed ID: 24467707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.
    Hallen A; Cooper AJ; Jamie JF; Karuso P
    Neurochem Res; 2015 Jun; 40(6):1252-66. PubMed ID: 25931162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. µ-Crystallin: A thyroid hormone binding protein.
    Kinney CJ; Bloch RJ
    Endocr Regul; 2021 May; 55(2):89-102. PubMed ID: 34020530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones.
    Hallen A; Cooper AJ; Jamie JF; Haynes PA; Willows RD
    J Neurochem; 2011 Aug; 118(3):379-87. PubMed ID: 21332720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imine reduction by an Ornithine cyclodeaminase/μ-crystallin homolog purified from
    Uma Mahesh VNM; Chadha A
    Biotechnol Rep (Amst); 2021 Sep; 31():e00664. PubMed ID: 34557391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain.
    Hallen A; Jamie JF; Cooper AJ
    Neurochem Res; 2014; 39(3):527-41. PubMed ID: 23314864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice.
    Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Nov; 35(46):15403-18. PubMed ID: 26586827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two structures of a thiazolinyl imine reductase from Yersinia enterocolitica provide insight into catalysis and binding to the nonribosomal peptide synthetase module of HMWP1.
    Meneely KM; Lamb AL
    Biochemistry; 2012 Nov; 51(44):9002-13. PubMed ID: 23066849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and preliminary X-ray crystallographic analysis of NADPH: azodicarbonyl/quinone oxidoreductase, a plant zeta-crystallin.
    Mano J; Yoon H; Asada K; Babiychuk E; Inzé D; Mikami B
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):374-6. PubMed ID: 11004574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine brain ketimine reductase.
    Nardini M; Ricci G; Vesci L; Pecci L; Cavallini D
    Biochim Biophys Acta; 1988 Nov; 957(2):286-92. PubMed ID: 3191146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a ketimine-reducing enzyme.
    Nardini M; Ricci G; Caccuri AM; Solinas SP; Vesci L; Cavallini D
    Eur J Biochem; 1988 May; 173(3):689-94. PubMed ID: 3371353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain.
    Hallen A; Cooper AJ
    Neurochem Res; 2017 Jan; 42(1):217-243. PubMed ID: 27518089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of human micro-crystallin complexed with NADPH.
    Cheng Z; Sun L; He J; Gong W
    Protein Sci; 2007 Feb; 16(2):329-35. PubMed ID: 17242435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallin-gazing: unveiling enzymatic activity.
    Reed PW; Bloch RJ
    J Neurochem; 2011 Aug; 118(3):315-6. PubMed ID: 21418222
    [No Abstract]   [Full Text] [Related]  

  • 17. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries.
    Hallen A; Jamie JF; Cooper AJ
    Amino Acids; 2013 Dec; 45(6):1249-72. PubMed ID: 24043460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification.
    Vogel M; Lawson M; Sippl W; Conrad U; Roos W
    J Biol Chem; 2010 Jun; 285(24):18397-406. PubMed ID: 20378534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical conversion of alpha-amino acids into alpha-keto acids by 4,5-epoxy-2-decenal.
    Zamora R; Navarro JL; Gallardo E; Hidalgo FJ
    J Agric Food Chem; 2006 Aug; 54(16):6101-5. PubMed ID: 16881723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role of T3-binding protein μ-crystallin (CRYM) in health and disease.
    Aksoy O; Hantusch B; Kenner L
    Trends Endocrinol Metab; 2022 Dec; 33(12):804-816. PubMed ID: 36344381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.