These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26173555)

  • 1. Restoration of rhythmicity in diffusively coupled dynamical networks.
    Zou W; Senthilkumar DV; Nagao R; Kiss IZ; Tang Y; Koseska A; Duan J; Kurths J
    Nat Commun; 2015 Jul; 6():7709. PubMed ID: 26173555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation quenching in diffusively coupled dynamical networks with inertial effects.
    Zou W; Chen Y; Senthilkumar DV; Kurths J
    Chaos; 2022 Apr; 32(4):041102. PubMed ID: 35489855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenching and revival of oscillations induced by coupling through adaptive variables.
    Zou W; Ocampo-Espindola JL; Senthilkumar DV; Kiss IZ; Zhan M; Kurths J
    Phys Rev E; 2019 Mar; 99(3-1):032214. PubMed ID: 30999495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revival of oscillation from mean-field-induced death: Theory and experiment.
    Ghosh D; Banerjee T; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052908. PubMed ID: 26651763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of oscillation by the limiting factor of diffusively coupled oscillators.
    Manoranjani M; Senthilkumar DV; Zou W; Chandrasekar VK
    Phys Rev E; 2022 Dec; 106(6-1):064204. PubMed ID: 36671171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization and amplitude death in hypernetworks.
    Bilal S; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062923. PubMed ID: 25019867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turing-like instabilities from a limit cycle.
    Challenger JD; Burioni R; Fanelli D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022818. PubMed ID: 26382465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.
    Zou W; Sebek M; Kiss IZ; Kurths J
    Chaos; 2017 Jun; 27(6):061101. PubMed ID: 28679221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling.
    Ghosh D; Banerjee T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062908. PubMed ID: 25615165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revival and death of oscillation under mean-field coupling: Interplay of intrinsic and extrinsic filtering.
    Kumar K; Biswas D; Banerjee T; Zou W; Kurths J; Senthilkumar DV
    Phys Rev E; 2019 Nov; 100(5-1):052212. PubMed ID: 31870041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter mismatches and oscillation death in coupled oscillators.
    Koseska A; Volkov E; Kurths J
    Chaos; 2010 Jun; 20(2):023132. PubMed ID: 20590328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revoking amplitude and oscillation deaths by low-pass filter in coupled oscillators.
    Zou W; Zhan M; Kurths J
    Phys Rev E; 2017 Jun; 95(6-1):062206. PubMed ID: 28709198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillation behavior driven by processing delay in diffusively coupled inactive systems: Cluster synchronization and multistability.
    Yao C; He Z; Zou W
    Chaos; 2020 Dec; 30(12):123137. PubMed ID: 33380058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous generation of persistent activity in diffusively coupled cellular assemblies.
    Ghosh R; Menon SN
    Phys Rev E; 2022 Jan; 105(1-1):014311. PubMed ID: 35193258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additional repulsion reduces the dynamical resilience in the damaged networks.
    Bera BK
    Chaos; 2020 Feb; 30(2):023132. PubMed ID: 32113231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude-phase coupling drives chimera states in globally coupled laser networks.
    Böhm F; Zakharova A; Schöll E; Lüdge K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):040901. PubMed ID: 25974428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging transition and universal scaling in oscillator networks.
    Daido H; Nakanishi K
    Phys Rev Lett; 2004 Sep; 93(10):104101. PubMed ID: 15447406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving modulated oscillations by feedback control.
    Ge T; Tian X; Kurths J; Feng J; Lin W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022909. PubMed ID: 25215801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells.
    Gosak M; Stožer A; Markovič R; Dolenšek J; Marhl M; Rupnik MS; Perc M
    Chaos; 2015 Jul; 25(7):073115. PubMed ID: 26232966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External periodic driving of large systems of globally coupled phase oscillators.
    Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J
    Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.