These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26173723)

  • 1. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.
    Pang Q; Kundu D; Cuisinier M; Nazar LF
    Nat Commun; 2014 Aug; 5():4759. PubMed ID: 25154399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
    Kim KR; Lee KS; Ahn CY; Yu SH; Sung YE
    Sci Rep; 2016 Aug; 6():32433. PubMed ID: 27573528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategic approach to recharging lithium-sulphur batteries for long cycle life.
    Su YS; Fu Y; Cochell T; Manthiram A
    Nat Commun; 2013; 4():2985. PubMed ID: 24346483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge.
    Zhou G; Paek E; Hwang GS; Manthiram A
    Nat Commun; 2015 Jul; 6():7760. PubMed ID: 26182892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li
    Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces.
    Liu Z; Hubble D; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2015 Apr; 17(14):9032-9. PubMed ID: 25752296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer.
    Su YS; Manthiram A
    Nat Commun; 2012; 3():1166. PubMed ID: 23132016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li₂S/graphene composite for lithium-sulfur batteries.
    Li Z; Zhang S; Zhang C; Ueno K; Yasuda T; Tatara R; Dokko K; Watanabe M
    Nanoscale; 2015 Sep; 7(34):14385-92. PubMed ID: 26248299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO₂ Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries.
    Hong S; Han Y; Zhang K; Wang M; Cui N; Du X; Li Q; Huang Y; Jiang F; Xie K
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1715-1722. PubMed ID: 31492335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs.
    Ji X; Evers S; Black R; Nazar LF
    Nat Commun; 2011; 2():325. PubMed ID: 21610728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.
    Chen H; Zou Q; Liang Z; Liu H; Li Q; Lu YC
    Nat Commun; 2015 Jan; 6():5877. PubMed ID: 25565112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.